Chen Fei Low, Norazli Ghadin, Muhamad Arif Mohamad Jamali
{"title":"Molecular dynamics simulations reveal mechanistic insights into aptamer-induced structural rearrangements in viral capsid proteins.","authors":"Chen Fei Low, Norazli Ghadin, Muhamad Arif Mohamad Jamali","doi":"10.1007/s10822-025-00633-0","DOIUrl":null,"url":null,"abstract":"<p><p>Macrobrachium rosenbergii nodavirus is a major viral pathogen responsible for white tail disease in giant freshwater prawn aquaculture, leading to significant economic losses. In this study, a truncated DNA aptamer, TrAptm-1 was investigated for its binding properties against both monomeric and trimeric forms of the MrNV capsid proteins. Molecular dynamics simulations coupled with MM/PBSA binding free energy calculations revealed that TrAptm-1 exhibited a higher binding affinity to the trimeric capsid protein (-153.95 ± 6.74 kcal/mol) compared to the monomeric form (-120.77 ± 2.46 kcal/mol). TrAptm-1 binding induced significant conformational changes and structural rearrangements in the capsid protein, highlighted the antiviral potential of TrAptm-1 to interfere with the capsid protein self-assembly process. The observed structural changes demonstrated the importance of the oligomeric state in aptamer-capsid protein interactions, emphasizing that extended simulations up-to microseconds are required to capture the slow conformational rearrangements characteristic of large oligomeric protein complexes. These findings provide a molecular basis for the development of aptamer-based antiviral strategies, and the design of biosensor for early detection of MrNV in aquaculture settings.</p>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"39 1","pages":"57"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12287205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10822-025-00633-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Macrobrachium rosenbergii nodavirus is a major viral pathogen responsible for white tail disease in giant freshwater prawn aquaculture, leading to significant economic losses. In this study, a truncated DNA aptamer, TrAptm-1 was investigated for its binding properties against both monomeric and trimeric forms of the MrNV capsid proteins. Molecular dynamics simulations coupled with MM/PBSA binding free energy calculations revealed that TrAptm-1 exhibited a higher binding affinity to the trimeric capsid protein (-153.95 ± 6.74 kcal/mol) compared to the monomeric form (-120.77 ± 2.46 kcal/mol). TrAptm-1 binding induced significant conformational changes and structural rearrangements in the capsid protein, highlighted the antiviral potential of TrAptm-1 to interfere with the capsid protein self-assembly process. The observed structural changes demonstrated the importance of the oligomeric state in aptamer-capsid protein interactions, emphasizing that extended simulations up-to microseconds are required to capture the slow conformational rearrangements characteristic of large oligomeric protein complexes. These findings provide a molecular basis for the development of aptamer-based antiviral strategies, and the design of biosensor for early detection of MrNV in aquaculture settings.
期刊介绍:
The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas:
- theoretical chemistry;
- computational chemistry;
- computer and molecular graphics;
- molecular modeling;
- protein engineering;
- drug design;
- expert systems;
- general structure-property relationships;
- molecular dynamics;
- chemical database development and usage.