Machine learning model interpretability using SHAP values: Applied to the task of classifying and predicting the nutritional content of different cuts of mutton.

IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Food Chemistry: X Pub Date : 2025-07-04 eCollection Date: 2025-07-01 DOI:10.1016/j.fochx.2025.102739
Li Wang, Xuchun Sun, Jing Liang, Zhiyuan Ma, Fei Li, Shengyan Hao, Baocang Liu, Long Guo, Xiuxiu Weng
{"title":"Machine learning model interpretability using SHAP values: Applied to the task of classifying and predicting the nutritional content of different cuts of mutton.","authors":"Li Wang, Xuchun Sun, Jing Liang, Zhiyuan Ma, Fei Li, Shengyan Hao, Baocang Liu, Long Guo, Xiuxiu Weng","doi":"10.1016/j.fochx.2025.102739","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid identification and prediction of nutritional components in fresh meat products pose a significant challenge. This study aims to classify different cuts of fresh mutton and predict their nutritional components using SVM and PLS model, focusing on the differences in fatty acid composition among the <i>longissimus lumborum</i>, hindshank, and foreshank. An SVM-SHAP model predicted crude fat, protein, and fatty acids, while interpreting feature contributions. PUFA were significantly higher in the hindshank than in the longissimus lumborum and foreshank. The SVM model achieved a classification accuracy of 92.5 % and successfully predicted key nutritional parameters such as EE, CP, MUFA and PUFA with RPD values exceeding 2.7 in the test set. SHAP value analysis revealed that lipid-related variables and wavelengths in the 2300-2500 nm region were major contributors to the model. Vis-NIR-based SVM modeling technology is a fast, non-destructive, and accurate tool for evaluating fresh mutton.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"29 ","pages":"102739"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12275142/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fochx.2025.102739","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid identification and prediction of nutritional components in fresh meat products pose a significant challenge. This study aims to classify different cuts of fresh mutton and predict their nutritional components using SVM and PLS model, focusing on the differences in fatty acid composition among the longissimus lumborum, hindshank, and foreshank. An SVM-SHAP model predicted crude fat, protein, and fatty acids, while interpreting feature contributions. PUFA were significantly higher in the hindshank than in the longissimus lumborum and foreshank. The SVM model achieved a classification accuracy of 92.5 % and successfully predicted key nutritional parameters such as EE, CP, MUFA and PUFA with RPD values exceeding 2.7 in the test set. SHAP value analysis revealed that lipid-related variables and wavelengths in the 2300-2500 nm region were major contributors to the model. Vis-NIR-based SVM modeling technology is a fast, non-destructive, and accurate tool for evaluating fresh mutton.

使用SHAP值的机器学习模型可解释性:应用于分类和预测不同羊肉块的营养成分的任务。
鲜肉产品中营养成分的快速鉴定和预测是一项重大挑战。本研究旨在利用支持向量机和PLS模型对新鲜羊肉的不同部位进行分类,并预测其营养成分,重点研究腰最长肌、后胫肌和前胫肌脂肪酸组成的差异。SVM-SHAP模型预测粗脂肪、蛋白质和脂肪酸,同时解释特征贡献。后腿的PUFA明显高于腰最长肌和前胫。SVM模型的分类准确率达到92.5%,成功预测了测试集中的EE、CP、MUFA、PUFA等关键营养参数,RPD值均超过2.7。SHAP值分析显示,脂质相关变量和2300-2500 nm区域的波长是模型的主要贡献者。基于vis - nir的支持向量机建模技术是一种快速、无损、准确的鲜羊肉评价工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry: X
Food Chemistry: X CHEMISTRY, APPLIED-
CiteScore
4.90
自引率
6.60%
发文量
315
审稿时长
55 days
期刊介绍: Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信