Diagonalization of Operator functions by algebraic methods

IF 1.1 3区 数学 Q1 MATHEMATICS
Matthias Stiefenhofer
{"title":"Diagonalization of Operator functions by algebraic methods","authors":"Matthias Stiefenhofer","doi":"10.1016/j.laa.2025.07.013","DOIUrl":null,"url":null,"abstract":"<div><div>We give conditions for local diagonalization of an analytic operator family <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> according to <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow><mo>⋅</mo><mi>Δ</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow><mo>⋅</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> with diagonal operator polynomial <span><math><mi>Δ</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> and analytic near identity bijections <span><math><mi>ψ</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> and <span><math><mi>ϕ</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span>. The family <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> is acting between real or complex Banach spaces <em>B</em> and <span><math><mover><mrow><mi>B</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>.</div><div>The basic assumption is given by stabilization of the Jordan chains at length <em>k</em> in the sense that no root elements with finite rank above <em>k</em> are allowed to exist. Jordan chains with infinite rank may appear. Decompositions of the linear spaces <em>B</em> and <span><math><mover><mrow><mi>B</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> are constructed with corresponding subspaces assumed to be closed. These assumptions ensure finite pole order equal to <em>k</em> of the generalized inverse <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> at <span><math><mi>ε</mi><mo>=</mo><mn>0</mn></math></span>. The Smith form and smooth continuation of kernels and ranges of <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> to appropriate limit spaces at <span><math><mi>ε</mi><mo>=</mo><mn>0</mn></math></span> arise immediately.</div><div>An algebraically oriented and self-contained approach is used, based on a recursion that allows for construction of power series solutions of <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow><mo>⋅</mo><mi>b</mi><mo>=</mo><mn>0</mn></math></span>. The power series solutions are convergent, as soon as analyticity of <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> and continuity of related projections are assumed.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 319-354"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002976","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give conditions for local diagonalization of an analytic operator family L(ε) according to L(ε)=ψ(ε)Δ(ε)ϕ1(ε) with diagonal operator polynomial Δ(ε) and analytic near identity bijections ψ(ε) and ϕ(ε). The family L(ε) is acting between real or complex Banach spaces B and B¯.
The basic assumption is given by stabilization of the Jordan chains at length k in the sense that no root elements with finite rank above k are allowed to exist. Jordan chains with infinite rank may appear. Decompositions of the linear spaces B and B¯ are constructed with corresponding subspaces assumed to be closed. These assumptions ensure finite pole order equal to k of the generalized inverse L1(ε) at ε=0. The Smith form and smooth continuation of kernels and ranges of L(ε) to appropriate limit spaces at ε=0 arise immediately.
An algebraically oriented and self-contained approach is used, based on a recursion that allows for construction of power series solutions of L(ε)b=0. The power series solutions are convergent, as soon as analyticity of L(ε) and continuity of related projections are assumed.
算子函数的代数对角化
根据L(ε)=ψ(ε)⋅Δ(ε)⋅φ - 1(ε)的对角算子多项式Δ(ε)和解析近恒等双射ψ(ε)和φ (ε),给出了解析算子族L(ε)局部对角化的条件。族L(ε)作用于实或复巴拿赫空间B和B¯之间。通过长度为k的约当链的稳定性给出了基本假设,即不允许存在超过k阶的有限根元素。可以出现无限阶的Jordan链。对线性空间B和B¯进行分解,并假设相应的子空间是封闭的。这些假设保证了广义逆L−1(ε)在ε=0时的有限极点阶等于k。L(ε)在ε=0处的核和值域的史密斯形式和光滑延拓立即出现。采用了一种面向代数的自包含方法,该方法基于递归,允许构造L(ε)⋅b=0的幂级数解。只要假设L(ε)的可解析性和相关投影的连续性,幂级数解是收敛的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信