{"title":"Dome-celled aerogels with ultrahigh-temperature superelasticity over 2273 K","authors":"Kai Pang, Yuxing Xia, Xiaoting Liu, Wenhao Tong, Xiaotong Li, Chenyang Li, Wenbo Zhao, Yan Chen, Huasong Qin, Wenzhang Fang, Li Peng, Yilun Liu, Weiwei Gao, Zhen Xu, Yingjun Liu, Chao Gao","doi":"10.1126/science.adw5777","DOIUrl":null,"url":null,"abstract":"<div >Aerogels are known for their high porosity and very low density and can be made from a range of materials, but are limited by structural instability under extreme thermomechanical conditions. We report on 194 types of dome-celled ultralight aerogels that maintain superior elasticity spanning from 4.2 kelvin (K) to 2273 K, realized by a two-dimensional channel–confined chemistry method. Such aerogels exhibit superelasticity under 99% strain for 20,000 cycles and thermal shock resistance at 2273 K over 100 cycles. The high-entropy carbide aerogel achieves a thermal conductivity of 53.4 mW·m<sup>−1</sup>·K<sup>−1</sup> at 1273 K and 171.1 mW·m<sup>−1</sup>·K<sup>−1</sup> at 2273 K. The combination of temperature-invariant elasticity and chemical diversity makes such aerogels highly promising for extreme thermomechanics, from heat-insulated industries to deep space exploration.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"389 6757","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adw5777","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aerogels are known for their high porosity and very low density and can be made from a range of materials, but are limited by structural instability under extreme thermomechanical conditions. We report on 194 types of dome-celled ultralight aerogels that maintain superior elasticity spanning from 4.2 kelvin (K) to 2273 K, realized by a two-dimensional channel–confined chemistry method. Such aerogels exhibit superelasticity under 99% strain for 20,000 cycles and thermal shock resistance at 2273 K over 100 cycles. The high-entropy carbide aerogel achieves a thermal conductivity of 53.4 mW·m−1·K−1 at 1273 K and 171.1 mW·m−1·K−1 at 2273 K. The combination of temperature-invariant elasticity and chemical diversity makes such aerogels highly promising for extreme thermomechanics, from heat-insulated industries to deep space exploration.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.