A note on Erdős matrices and Marcus–Ree inequality

IF 1.1 3区 数学 Q1 MATHEMATICS
Aman Kushwaha , Raghavendra Tripathi
{"title":"A note on Erdős matrices and Marcus–Ree inequality","authors":"Aman Kushwaha ,&nbsp;Raghavendra Tripathi","doi":"10.1016/j.laa.2025.07.012","DOIUrl":null,"url":null,"abstract":"<div><div>In 1959, Marcus and Ree proved that any bistochastic matrix <em>A</em> satisfies<span><span><span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>≔</mo><munder><mi>max</mi><mrow><mi>σ</mi><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></munder><mo>⁡</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mi>A</mi><mo>(</mo><mi>i</mi><mo>,</mo><mi>σ</mi><mo>(</mo><mi>i</mi><mo>)</mo><mo>)</mo><mo>−</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mi>A</mi><msup><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>≥</mo><mn>0</mn><mspace></mspace><mo>.</mo></math></span></span></span> Erdős asked to characterize the bistochastic matrices satisfying <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. This problem remains largely open, and very recently, a complete list of such matrices was obtained in dimension <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span> by Bouthat, Mashreghi, and Morneau-Guérin. Soon after, Tripathi proved that there were only finitely many such matrices in any dimension <em>n</em>. In this paper, we continue the investigation initiated in these two works. We characterize all <span><math><mn>4</mn><mo>×</mo><mn>4</mn></math></span> bistochastic matrices satisfying <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. Furthermore, we show that for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mi>α</mi></math></span> has uncountably many solutions when <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>4</mn><mo>)</mo></math></span>. This answers a question raised in (Tripathi, 2025 <span><span>[16]</span></span>). We also extend the Marcus–Ree inequality to infinite bistochastic arrays and bistochastic kernels. Our investigation into <span><math><mn>4</mn><mo>×</mo><mn>4</mn></math></span> Erdős matrices also leads to several intriguing questions of independent interest. We propose several questions and conjectures and present numerical evidence for them.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 223-247"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002964","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 1959, Marcus and Ree proved that any bistochastic matrix A satisfiesΔn(A)maxσSni=1nA(i,σ(i))i,j=1nA(i,j)20. Erdős asked to characterize the bistochastic matrices satisfying Δn(A)=0. This problem remains largely open, and very recently, a complete list of such matrices was obtained in dimension n=3 by Bouthat, Mashreghi, and Morneau-Guérin. Soon after, Tripathi proved that there were only finitely many such matrices in any dimension n. In this paper, we continue the investigation initiated in these two works. We characterize all 4×4 bistochastic matrices satisfying Δ4(A)=0. Furthermore, we show that for n3, Δn(A)=α has uncountably many solutions when α(0,(n1)/4). This answers a question raised in (Tripathi, 2025 [16]). We also extend the Marcus–Ree inequality to infinite bistochastic arrays and bistochastic kernels. Our investigation into 4×4 Erdős matrices also leads to several intriguing questions of independent interest. We propose several questions and conjectures and present numerical evidence for them.
关于Erdős矩阵和Marcus-Ree不等式的注解
1959年,Marcus和Ree证明了任意双随机矩阵A satisfiesΔn(A)中,最大σ∈Sn(∑i=1nA(i,σ(i))−∑i,j=1nA(i,j)2≥0。Erdős要求描述满足Δn(A)=0的双随机矩阵。这个问题在很大程度上仍然悬而未决,最近,Bouthat、Mashreghi和morneau - gusamrin在n=3维上获得了这样的矩阵的完整列表。不久之后,Tripathi证明了在任意维n上只有有限多个这样的矩阵。在本文中,我们继续这两个作品中开始的研究。我们描述所有满足Δ4(A)=0的4×4双随机矩阵。进一步证明了当n≥3时,当α∈(0,(n−1)/4),Δn(A)=α有无数解。这回答了(Tripathi, 2025 b[16])中提出的一个问题。我们还将Marcus-Ree不等式推广到无限双随机数组和双随机核。我们对4×4 Erdős矩阵的调查还导致了几个有趣的独立问题。我们提出了几个问题和猜想,并为它们提供了数字证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信