Insights into the toxic effects of micro-nano-plastics on the human brain and their relationship with the onset of neurological diseases: A narrative review
Carmela Rita Balistreri , Daniele Magro , Nafisa M. Jadavji
{"title":"Insights into the toxic effects of micro-nano-plastics on the human brain and their relationship with the onset of neurological diseases: A narrative review","authors":"Carmela Rita Balistreri , Daniele Magro , Nafisa M. Jadavji","doi":"10.1016/j.arr.2025.102836","DOIUrl":null,"url":null,"abstract":"<div><div>The intensive production and use of plastics, poor biodegradability and inadequate recycling have caused excessive and alarming environmental pollution. This has led to the inevitable intake by humans, through different routes, of small plastic particles, the micro and nano-plastics (MNPs) with sizes ranging from nanometers (<1000 nm) to micrometers (from 5 mm to 1 µm). MNPs can cause harmful effects in human tissues and organs, contributing to the early onset of aging and various age-related diseases. A growing body of evidence supports this toxic role of MNPs. In this regard, it has been shown that their different chemical and physical properties, including different chemical composition with different additives, different size, shape, solubility and ability to interact with metals and microbial agents, as well as the duration of multiple exposures, modulate their toxic action. In the brain, as documented mainly by studies conducted on brain tissues of deceased individuals, nanosized nanoparticles (NPs) of mostly 50 nm or smaller, made of polyethylene, bioaccumulate, causing damage. The mechanisms involved do not seem to be fully understood. However, studies on animal models and human cell cultures using plastic particles made of synthetic polystyrene, of slightly larger dimensions, partially clarify this aspect. They demonstrated that these particles have the unique ability to cross the blood-brain barrier and evoke neurotoxicity, through the activation of pathways that determine oxidative stress, inflammation, apoptosis, altered synthesis of neurotransmitters, endocrine molecules and key enzymes related to nerve conduction, and able to influence the gut-brain axis. Despite the paucity of studies conducted directly in humans, this review collects a growing body of evidence demonstrating that exposure to MNPs, and essentially NPs, can damage neurons. This could lead to alterations in learning, memory and behaviour, and could evoke additional potential negative impacts, contributing to amplifying neuroinflammation and the onset of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Preventive approaches and measures to limit their use and human exposure, as well as potential therapeutic strategies, are also suggested.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"111 ","pages":"Article 102836"},"PeriodicalIF":12.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163725001825","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The intensive production and use of plastics, poor biodegradability and inadequate recycling have caused excessive and alarming environmental pollution. This has led to the inevitable intake by humans, through different routes, of small plastic particles, the micro and nano-plastics (MNPs) with sizes ranging from nanometers (<1000 nm) to micrometers (from 5 mm to 1 µm). MNPs can cause harmful effects in human tissues and organs, contributing to the early onset of aging and various age-related diseases. A growing body of evidence supports this toxic role of MNPs. In this regard, it has been shown that their different chemical and physical properties, including different chemical composition with different additives, different size, shape, solubility and ability to interact with metals and microbial agents, as well as the duration of multiple exposures, modulate their toxic action. In the brain, as documented mainly by studies conducted on brain tissues of deceased individuals, nanosized nanoparticles (NPs) of mostly 50 nm or smaller, made of polyethylene, bioaccumulate, causing damage. The mechanisms involved do not seem to be fully understood. However, studies on animal models and human cell cultures using plastic particles made of synthetic polystyrene, of slightly larger dimensions, partially clarify this aspect. They demonstrated that these particles have the unique ability to cross the blood-brain barrier and evoke neurotoxicity, through the activation of pathways that determine oxidative stress, inflammation, apoptosis, altered synthesis of neurotransmitters, endocrine molecules and key enzymes related to nerve conduction, and able to influence the gut-brain axis. Despite the paucity of studies conducted directly in humans, this review collects a growing body of evidence demonstrating that exposure to MNPs, and essentially NPs, can damage neurons. This could lead to alterations in learning, memory and behaviour, and could evoke additional potential negative impacts, contributing to amplifying neuroinflammation and the onset of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Preventive approaches and measures to limit their use and human exposure, as well as potential therapeutic strategies, are also suggested.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.