{"title":"Development and Optimization of Polyelectrolyte Complex Stabilized Piperine Adjuvant Simvastatin Nanoformulations for Improved Therapeutic Effect.","authors":"Shristy Verma, Sonali Sundram, Mohammad Yusuf, Musarrat Husain Warsi, Rishabha Malviya","doi":"10.2174/0113816128382527250625165648","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The aim of the study was to prepare polyelectrolyte complex stabilized piperine adjuvant simvastatin nanoformulations and evaluate the antimicrobial effect. Simvastatin has antimicrobial properties but low therapeutic efficacy due to rapid metabolism, with only 12% oral bioavailability. Piperine, a CYP3A4 inhibitor, enhances bioavailability by inhibiting drug-metabolizing enzymes. This study developed chitosan-neem gum polyelectrolyte complex (Ch-NG PEC) nanoparticles combining piperine and simvastatin and evaluated their antimicrobial efficacy compared to simvastatin alone.</p><p><strong>Methods: </strong>A flower-shaped nanoparticles of piperine adjuvant simvastatin were prepared by using chitosan (Ch)-neem gum (NG) as a polyelectrolyte complex (PEC) forming agent, and the anti-microbial effect of nanoformulations with and without piperine was evaluated. A solvent-anti-solvent method was used to form the nanoparticles, and a 32-factorial design was employed to analyze the impact of chitosan and neem gum concentration on the size of the nanoparticles and entrapment efficiency of simvastatin and piperine followed by their release profile and kinetics.</p><p><strong>Results: </strong>Nanoparticles showed high drug entrapment efficiency (simvastatin: 96.4-99.7%, piperine: 64.8- 99.4%) with sizes ranging from 341.3-629.1 nm. Drug release exceeded 50% in 3 hours and 99% in 8 hours, following Hixon-Crowell and Baker's Lonsdale models. Antimicrobial assays revealed activity against Staphylococcus aureus but not Candida albicans. The results of the anti-microbial assay indicated that the PECbased NPs stabilized piperine adjuvant simvastatin showed anti-microbial activity against Staphylococcus aureus but did not exhibit anti-fungal activity against Candida albicans.</p><p><strong>Conclusion: </strong>Piperine-adjuvant simvastatin Ch-NG-PEC nanoparticles demonstrate potential as a dualtreatment agent for hypercholesterolemia and bacterial infections.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128382527250625165648","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The aim of the study was to prepare polyelectrolyte complex stabilized piperine adjuvant simvastatin nanoformulations and evaluate the antimicrobial effect. Simvastatin has antimicrobial properties but low therapeutic efficacy due to rapid metabolism, with only 12% oral bioavailability. Piperine, a CYP3A4 inhibitor, enhances bioavailability by inhibiting drug-metabolizing enzymes. This study developed chitosan-neem gum polyelectrolyte complex (Ch-NG PEC) nanoparticles combining piperine and simvastatin and evaluated their antimicrobial efficacy compared to simvastatin alone.
Methods: A flower-shaped nanoparticles of piperine adjuvant simvastatin were prepared by using chitosan (Ch)-neem gum (NG) as a polyelectrolyte complex (PEC) forming agent, and the anti-microbial effect of nanoformulations with and without piperine was evaluated. A solvent-anti-solvent method was used to form the nanoparticles, and a 32-factorial design was employed to analyze the impact of chitosan and neem gum concentration on the size of the nanoparticles and entrapment efficiency of simvastatin and piperine followed by their release profile and kinetics.
Results: Nanoparticles showed high drug entrapment efficiency (simvastatin: 96.4-99.7%, piperine: 64.8- 99.4%) with sizes ranging from 341.3-629.1 nm. Drug release exceeded 50% in 3 hours and 99% in 8 hours, following Hixon-Crowell and Baker's Lonsdale models. Antimicrobial assays revealed activity against Staphylococcus aureus but not Candida albicans. The results of the anti-microbial assay indicated that the PECbased NPs stabilized piperine adjuvant simvastatin showed anti-microbial activity against Staphylococcus aureus but did not exhibit anti-fungal activity against Candida albicans.
Conclusion: Piperine-adjuvant simvastatin Ch-NG-PEC nanoparticles demonstrate potential as a dualtreatment agent for hypercholesterolemia and bacterial infections.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.