An Autonomous Underwater Glider With Improved Transport Efficiency

IF 5.3 2区 工程技术 Q1 ENGINEERING, CIVIL
Peter Ventola;Gregory Burgess;Brian Claus;Richard Camilli
{"title":"An Autonomous Underwater Glider With Improved Transport Efficiency","authors":"Peter Ventola;Gregory Burgess;Brian Claus;Richard Camilli","doi":"10.1109/JOE.2025.3531935","DOIUrl":null,"url":null,"abstract":"In this article, we present the design and test results of an autonomous underwater glider: Enhanced Propulsion Integrated Capability—Deep Autonomous Underwater Glider. This modified Slocum glider uses redesigned lifting surfaces and hybrid propulsion that are optimized for efficient operation in confined depth bands, deep water profiling, and adverse currents. Modeling suggests a maximum through-water velocity approaching 2 m/s and a theoretical maximum range up to 7000 km when equipped with a commercially available Li-ion rechargeable battery pack. Results indicate more than 30% improvement in glide efficiency and demonstrate the ability of this vehicle to operate equally well within ice-covered coastal regions and the deep ocean. These capabilities, combined with an improved navigation process, permit long-range and shore-launched missions with energy-intensive payloads.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 3","pages":"1657-1667"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11072729","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11072729/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present the design and test results of an autonomous underwater glider: Enhanced Propulsion Integrated Capability—Deep Autonomous Underwater Glider. This modified Slocum glider uses redesigned lifting surfaces and hybrid propulsion that are optimized for efficient operation in confined depth bands, deep water profiling, and adverse currents. Modeling suggests a maximum through-water velocity approaching 2 m/s and a theoretical maximum range up to 7000 km when equipped with a commercially available Li-ion rechargeable battery pack. Results indicate more than 30% improvement in glide efficiency and demonstrate the ability of this vehicle to operate equally well within ice-covered coastal regions and the deep ocean. These capabilities, combined with an improved navigation process, permit long-range and shore-launched missions with energy-intensive payloads.
提高运输效率的自主水下滑翔机
本文介绍了一种自主水下滑翔机的设计和试验结果:增强推进综合能力-深度自主水下滑翔机。改进后的Slocum滑翔机采用了重新设计的升力面和混合动力推进,优化了在受限深度带、深水剖面和逆流中高效运行的能力。建模表明,当配备商用锂离子可充电电池组时,最大通过水速度接近2米/秒,理论最大续航里程可达7000公里。结果表明,滑翔效率提高了30%以上,并证明了这种飞行器在冰雪覆盖的沿海地区和深海中同样良好的运行能力。这些能力,结合改进的导航过程,允许远程和海岸发射任务与能源密集型有效载荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Oceanic Engineering
IEEE Journal of Oceanic Engineering 工程技术-工程:大洋
CiteScore
9.60
自引率
12.20%
发文量
86
审稿时长
12 months
期刊介绍: The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信