Peter Ventola;Gregory Burgess;Brian Claus;Richard Camilli
{"title":"An Autonomous Underwater Glider With Improved Transport Efficiency","authors":"Peter Ventola;Gregory Burgess;Brian Claus;Richard Camilli","doi":"10.1109/JOE.2025.3531935","DOIUrl":null,"url":null,"abstract":"In this article, we present the design and test results of an autonomous underwater glider: Enhanced Propulsion Integrated Capability—Deep Autonomous Underwater Glider. This modified Slocum glider uses redesigned lifting surfaces and hybrid propulsion that are optimized for efficient operation in confined depth bands, deep water profiling, and adverse currents. Modeling suggests a maximum through-water velocity approaching 2 m/s and a theoretical maximum range up to 7000 km when equipped with a commercially available Li-ion rechargeable battery pack. Results indicate more than 30% improvement in glide efficiency and demonstrate the ability of this vehicle to operate equally well within ice-covered coastal regions and the deep ocean. These capabilities, combined with an improved navigation process, permit long-range and shore-launched missions with energy-intensive payloads.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 3","pages":"1657-1667"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11072729","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11072729/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we present the design and test results of an autonomous underwater glider: Enhanced Propulsion Integrated Capability—Deep Autonomous Underwater Glider. This modified Slocum glider uses redesigned lifting surfaces and hybrid propulsion that are optimized for efficient operation in confined depth bands, deep water profiling, and adverse currents. Modeling suggests a maximum through-water velocity approaching 2 m/s and a theoretical maximum range up to 7000 km when equipped with a commercially available Li-ion rechargeable battery pack. Results indicate more than 30% improvement in glide efficiency and demonstrate the ability of this vehicle to operate equally well within ice-covered coastal regions and the deep ocean. These capabilities, combined with an improved navigation process, permit long-range and shore-launched missions with energy-intensive payloads.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.