{"title":"Design and Development of a Low-Cost Floater for Sustainable Fishing","authors":"Anja Babić;Martin Oreč;Nikola Mišković;Shlomi Dahan;Marijan Vonić;Iwan Sidaropoulos;Neven Cukrov;Roee Diamant","doi":"10.1109/JOE.2025.3538944","DOIUrl":null,"url":null,"abstract":"While it is widely recognized that fish are an ecologically and commercially important group, our current knowledge of fish occurrence, composition (diversity), abundance and behavior (e.g., migration) is limited to anecdotal sightings and reports, often from laypersons. In situ marine monitoring bridges this gap and allows us to track and monitor marine life. One such system is the SOUND system: a swarm of low-cost Lagrangian floats that can noninvasively support aquaculture and fisheries, especially in remote areas and developing countries. The swarm of floats works together in a group and uses underwater acoustic communication. It provides long-term data on the fish population, which can shed light on the interdependencies of spatially segmented ecosystems, the top-down regulation of bio-geophysical processes and the sensitivity of the environment to anthropogenic stress factors. SOUND Floater consists of a piston-based buoy control system, an active sonar system with on-board analysis and a satellite communication module. It is capable of probing the water to a depth of 50 m while maintaining position with an accuracy of <inline-formula><tex-math>$< $</tex-math></inline-formula>10 cm, detecting schools of fish from a distance of 500 m and operating for five consecutive days. In this technical communication article we present the detailed design of the SOUND prototype, including its mechanical, electrical, and algorithmic parts. We report on results from laboratory pool and from two sea trials.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 3","pages":"2209-2221"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10956132/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
While it is widely recognized that fish are an ecologically and commercially important group, our current knowledge of fish occurrence, composition (diversity), abundance and behavior (e.g., migration) is limited to anecdotal sightings and reports, often from laypersons. In situ marine monitoring bridges this gap and allows us to track and monitor marine life. One such system is the SOUND system: a swarm of low-cost Lagrangian floats that can noninvasively support aquaculture and fisheries, especially in remote areas and developing countries. The swarm of floats works together in a group and uses underwater acoustic communication. It provides long-term data on the fish population, which can shed light on the interdependencies of spatially segmented ecosystems, the top-down regulation of bio-geophysical processes and the sensitivity of the environment to anthropogenic stress factors. SOUND Floater consists of a piston-based buoy control system, an active sonar system with on-board analysis and a satellite communication module. It is capable of probing the water to a depth of 50 m while maintaining position with an accuracy of $< $10 cm, detecting schools of fish from a distance of 500 m and operating for five consecutive days. In this technical communication article we present the detailed design of the SOUND prototype, including its mechanical, electrical, and algorithmic parts. We report on results from laboratory pool and from two sea trials.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.