Evaluation of precursor MicroRNA (pre-miRNA) as a powerful tool for robust CHO production cell line platform development.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Li Gao, Xiaohong Li, Mengxin Zhang, Bin Li, Xiuxiu Miao, Chao Yu, Wei Guo, Cuiqiao Zhang, Xiangyuan He, Kaisheng Huang, Zichen Qian
{"title":"Evaluation of precursor MicroRNA (pre-miRNA) as a powerful tool for robust CHO production cell line platform development.","authors":"Li Gao, Xiaohong Li, Mengxin Zhang, Bin Li, Xiuxiu Miao, Chao Yu, Wei Guo, Cuiqiao Zhang, Xiangyuan He, Kaisheng Huang, Zichen Qian","doi":"10.1007/s00449-025-03200-x","DOIUrl":null,"url":null,"abstract":"<p><p>Chinese hamster ovary (CHO) cells are the most widely used host for the commercial production of recombinant therapeutic proteins. The rapidly growing demand for large quantities of biologics at controllable cost-of-goods requires continuous cell engineering and process optimization of the CHO host cells. MicroRNAs (miRNAs) have been shown to enhance recombinant protein production in CHO cells. While studies have demonstrated that transient overexpression of certain miRNAs can increase recombinant protein yields, systematic comparisons of different miRNA overexpression forms (primary, precursor, and mature) remain limited. Furthermore, their application in stable cell line development, particularly for difficult-to-express proteins, has yet to be thoroughly explored. This study evaluated three miRNA overexpression strategies: primary miRNAs (pri-miRNAs), precursor miRNAs (pre-miRNAs), and flanked mature miRNAs (incorporating the mature sequence plus reverse complementary and loop sequences), to enhance the expression of difficult-to-express proteins in stable CHO cell lines. Notably, these miRNA constructs were built-in with the gene of interest (GOI) on the same vector to simplify stable cell line generation. Our results indicate that the pre-miRNA overexpression strategy is the most effective. Overexpression of premiR-92a, premiR-200a, premiR-483, and premiR-106b significantly increased the expression level of a bispecific antibody (BsAb) and an Fc-fusion protein without compromising product quality. Further clone evaluation of the premiR-92a and premiR-483 overexpression groups revealed an improved proportion of high-productivity and stable clones. In conclusion, this study demonstrates that integrating pre-miRNA expression cassettes into therapeutic protein vectors for co-expression is a valuable and effective engineering strategy for developing a robust stable CHO expression platform.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03200-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chinese hamster ovary (CHO) cells are the most widely used host for the commercial production of recombinant therapeutic proteins. The rapidly growing demand for large quantities of biologics at controllable cost-of-goods requires continuous cell engineering and process optimization of the CHO host cells. MicroRNAs (miRNAs) have been shown to enhance recombinant protein production in CHO cells. While studies have demonstrated that transient overexpression of certain miRNAs can increase recombinant protein yields, systematic comparisons of different miRNA overexpression forms (primary, precursor, and mature) remain limited. Furthermore, their application in stable cell line development, particularly for difficult-to-express proteins, has yet to be thoroughly explored. This study evaluated three miRNA overexpression strategies: primary miRNAs (pri-miRNAs), precursor miRNAs (pre-miRNAs), and flanked mature miRNAs (incorporating the mature sequence plus reverse complementary and loop sequences), to enhance the expression of difficult-to-express proteins in stable CHO cell lines. Notably, these miRNA constructs were built-in with the gene of interest (GOI) on the same vector to simplify stable cell line generation. Our results indicate that the pre-miRNA overexpression strategy is the most effective. Overexpression of premiR-92a, premiR-200a, premiR-483, and premiR-106b significantly increased the expression level of a bispecific antibody (BsAb) and an Fc-fusion protein without compromising product quality. Further clone evaluation of the premiR-92a and premiR-483 overexpression groups revealed an improved proportion of high-productivity and stable clones. In conclusion, this study demonstrates that integrating pre-miRNA expression cassettes into therapeutic protein vectors for co-expression is a valuable and effective engineering strategy for developing a robust stable CHO expression platform.

评估前体MicroRNA (pre-miRNA)作为强大的CHO生产细胞系平台开发的有力工具。
中国仓鼠卵巢(CHO)细胞是商业生产重组治疗性蛋白最广泛使用的宿主。对大量成本可控的生物制剂的需求快速增长,需要对CHO宿主细胞进行持续的细胞工程和工艺优化。MicroRNAs (miRNAs)已被证明可以增强CHO细胞中重组蛋白的产生。虽然研究表明某些miRNA的短暂过表达可以增加重组蛋白的产量,但不同miRNA过表达形式(原代、前体和成熟)的系统比较仍然有限。此外,它们在稳定细胞系发育中的应用,特别是对难以表达的蛋白质的应用,尚未得到彻底的探索。本研究评估了三种miRNA过表达策略:初级miRNAs (pri-miRNAs),前体miRNAs (pre-miRNAs)和侧翼成熟miRNAs(包括成熟序列加上反向互补和环序列),以增强稳定的CHO细胞系中难以表达的蛋白的表达。值得注意的是,这些miRNA构建物与目标基因(GOI)内置于同一载体上,以简化稳定细胞系的生成。我们的研究结果表明,pre-miRNA过表达策略是最有效的。过表达premiR-92a、premiR-200a、premiR-483和premiR-106b可显著提高双特异性抗体(BsAb)和fc融合蛋白的表达水平,但不影响产品质量。对premiR-92a和premiR-483过表达组的进一步克隆评估显示,高生产力和稳定克隆的比例有所提高。总之,本研究表明,将pre-miRNA表达盒整合到治疗性蛋白载体中进行共表达是一种有价值且有效的工程策略,可以开发一个强大而稳定的CHO表达平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信