Xiaoyi Yang, Yiyang Fan, Xin Xu, Tong Shen, Xiaohui An, Yuting Zhang, Ze Zhang, Hongzhi Pan, Dong Chang
{"title":"Direct Testing of Blood Samples to Diagnose Bloodstream Infections.","authors":"Xiaoyi Yang, Yiyang Fan, Xin Xu, Tong Shen, Xiaohui An, Yuting Zhang, Ze Zhang, Hongzhi Pan, Dong Chang","doi":"10.1021/acsinfecdis.5c00109","DOIUrl":null,"url":null,"abstract":"<p><p>Bloodstream infection (BSI) is a critical condition with extremely high mortality. Rapid and accurate diagnosis is crucial for effective treatment. The traditional blood culture (BC) method has issues, such as long testing times and limited sensitivity, making it challenging to meet the need for timely diagnosis. To address this problem, various molecular biology methods for directly detecting blood samples (whole blood, plasma, serum, and positive BC samples) have emerged. These include Raman spectroscopy, mass spectrometry, nucleic acid amplification, and hybridization techniques (such as the CRISPR/Cas system, digital droplet PCR (ddPCR), and T2 magnetic resonance (T2MR)), biosensors, and next-generation sequencing (NGS). These methods can quickly identify pathogens and their drug-resistant markers, significantly reducing diagnostic delays and helping to provide earlier targeted treatment. This article systematically analyzes the principles, advantages, and disadvantages of these advanced techniques, explores their value in revolutionizing the BSI diagnostic model, and looks ahead to future development directions, providing a reference for research and clinical applications in this field.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00109","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bloodstream infection (BSI) is a critical condition with extremely high mortality. Rapid and accurate diagnosis is crucial for effective treatment. The traditional blood culture (BC) method has issues, such as long testing times and limited sensitivity, making it challenging to meet the need for timely diagnosis. To address this problem, various molecular biology methods for directly detecting blood samples (whole blood, plasma, serum, and positive BC samples) have emerged. These include Raman spectroscopy, mass spectrometry, nucleic acid amplification, and hybridization techniques (such as the CRISPR/Cas system, digital droplet PCR (ddPCR), and T2 magnetic resonance (T2MR)), biosensors, and next-generation sequencing (NGS). These methods can quickly identify pathogens and their drug-resistant markers, significantly reducing diagnostic delays and helping to provide earlier targeted treatment. This article systematically analyzes the principles, advantages, and disadvantages of these advanced techniques, explores their value in revolutionizing the BSI diagnostic model, and looks ahead to future development directions, providing a reference for research and clinical applications in this field.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.