Varieties of group-graded algebras of proper central exponent greater than two

IF 1.1 3区 数学 Q1 MATHEMATICS
Francesca S. Benanti , Angela Valenti
{"title":"Varieties of group-graded algebras of proper central exponent greater than two","authors":"Francesca S. Benanti ,&nbsp;Angela Valenti","doi":"10.1016/j.laa.2025.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>F</em> be a field of characteristic zero and let <span><math><mi>V</mi></math></span> be a variety of associative <em>F</em>-algebras graded by a finite abelian group <em>G</em>. To a variety <span><math><mi>V</mi></math></span> is associated a numerical sequence called the sequence of proper central <em>G</em>-codimensions, <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>δ</mi></mrow></msubsup><mo>(</mo><mi>V</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>. Here <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>δ</mi></mrow></msubsup><mo>(</mo><mi>V</mi><mo>)</mo></math></span> is the dimension of the space of multilinear proper central <em>G</em>-polynomials in <em>n</em> fixed variables of any algebra <em>A</em> generating the variety <span><math><mi>V</mi></math></span>. Such sequence gives information on the growth of the proper central <em>G</em>-polynomials of <em>A</em> and in <span><span>[21]</span></span> it was proved that <span><math><mi>e</mi><mi>x</mi><msup><mrow><mi>p</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>δ</mi></mrow></msup><mo>(</mo><mi>V</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><mroot><mrow><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>δ</mi></mrow></msubsup><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></mroot></math></span> exists and is an integer called the proper central <em>G</em>-exponent.</div><div>The aim of this paper is to characterize the varieties of associative <em>G</em>-graded algebras of proper central <em>G</em>-exponent greater than two. To this end we construct a finite list of <em>G</em>-graded algebras and we prove that <span><math><mi>e</mi><mi>x</mi><msup><mrow><mi>p</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>δ</mi></mrow></msup><mo>(</mo><mi>V</mi><mo>)</mo><mo>&gt;</mo><mn>2</mn></math></span> if and only if at least one of the algebras belongs to <span><math><mi>V</mi></math></span>.</div><div>Matching this result with the characterization of the varieties of almost polynomial growth given in <span><span>[11]</span></span>, we obtain a characterization of the varieties of proper central <em>G</em>-exponent equal to two.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 145-171"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952500285X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let F be a field of characteristic zero and let V be a variety of associative F-algebras graded by a finite abelian group G. To a variety V is associated a numerical sequence called the sequence of proper central G-codimensions, cnG,δ(V),n1. Here cnG,δ(V) is the dimension of the space of multilinear proper central G-polynomials in n fixed variables of any algebra A generating the variety V. Such sequence gives information on the growth of the proper central G-polynomials of A and in [21] it was proved that expG,δ(V)=limncnG,δ(V)n exists and is an integer called the proper central G-exponent.
The aim of this paper is to characterize the varieties of associative G-graded algebras of proper central G-exponent greater than two. To this end we construct a finite list of G-graded algebras and we prove that expG,δ(V)>2 if and only if at least one of the algebras belongs to V.
Matching this result with the characterization of the varieties of almost polynomial growth given in [11], we obtain a characterization of the varieties of proper central G-exponent equal to two.
中心指数大于2的群分级代数的变种
设F为特征为零的域,设V为由有限阿贝尔群g分级的一系列共轭F-代数,对这些代数V有一个称为中心g -协维序列的数值序列,cnG,δ(V),n≥1。这里,cnG,δ(V)是生成变量V的任意代数A的n个固定变量的多线性固有中心g多项式空间的维数。该序列给出了A的固有中心g多项式的生长信息,并在[21]中证明了expG,δ(V)=limn→∞(cnG,δ(V)n)存在,并且是一个称为固有中心g指数的整数。本文的目的是研究中心g指数大于2的共轭g级代数的变化。为此,我们构造了一个g -梯度代数的有限列表,并证明了exp,δ(V)>;2当且仅当其中至少有一个代数属于V。将这一结果与[11]中给出的几乎多项式增长的变种的刻画相匹配,我们得到了g -中心指数的变种等于2的一个刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信