{"title":"Leonard pairs arising from dual polar spaces","authors":"Bo Hou , Runxian Zhang , Lihang Hou","doi":"10.1016/j.laa.2025.07.010","DOIUrl":null,"url":null,"abstract":"<div><div>A Leonard pair is an ordered pair of diagonalizable linear transformations on a finite-dimensional vector space such that each of the two transformations acts on an eigenbasis for the other one in an irreducible tridiagonal form. In this paper, we consider Leonard pairs arising from a class of graded posets called dual polar spaces. Let <em>P</em> be a dual polar space with rank <em>N</em> and let <em>T</em> be its incident algebra (over the complex field) generated by the raising matrix <em>R</em>, the lowering matrix <em>L</em> and the projection matrices <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mspace></mspace><mo>(</mo><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>N</mi><mo>)</mo></math></span>. Define two elements <span><math><mi>A</mi><mo>,</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> of <em>T</em>: <span><math><mi>A</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>R</mi><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi></mrow></msubsup><msub><mrow><mi>θ</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup><msubsup><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>L</mi><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi></mrow></msubsup><msubsup><mrow><mi>θ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Assume <span><math><mi>N</mi><mo>≥</mo><mn>8</mn></math></span>. We first give a necessary and sufficient condition for <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> to satisfy the so-called tridiagonal relations. Then these results allow us to further display a necessary and sufficient condition for <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> acting on any irreducible <em>T</em>-module as a Leonard pair.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 115-134"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002940","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A Leonard pair is an ordered pair of diagonalizable linear transformations on a finite-dimensional vector space such that each of the two transformations acts on an eigenbasis for the other one in an irreducible tridiagonal form. In this paper, we consider Leonard pairs arising from a class of graded posets called dual polar spaces. Let P be a dual polar space with rank N and let T be its incident algebra (over the complex field) generated by the raising matrix R, the lowering matrix L and the projection matrices . Define two elements of T: and . Assume . We first give a necessary and sufficient condition for A and to satisfy the so-called tridiagonal relations. Then these results allow us to further display a necessary and sufficient condition for A and acting on any irreducible T-module as a Leonard pair.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.