Leonard pairs arising from dual polar spaces

IF 1 3区 数学 Q1 MATHEMATICS
Bo Hou , Runxian Zhang , Lihang Hou
{"title":"Leonard pairs arising from dual polar spaces","authors":"Bo Hou ,&nbsp;Runxian Zhang ,&nbsp;Lihang Hou","doi":"10.1016/j.laa.2025.07.010","DOIUrl":null,"url":null,"abstract":"<div><div>A Leonard pair is an ordered pair of diagonalizable linear transformations on a finite-dimensional vector space such that each of the two transformations acts on an eigenbasis for the other one in an irreducible tridiagonal form. In this paper, we consider Leonard pairs arising from a class of graded posets called dual polar spaces. Let <em>P</em> be a dual polar space with rank <em>N</em> and let <em>T</em> be its incident algebra (over the complex field) generated by the raising matrix <em>R</em>, the lowering matrix <em>L</em> and the projection matrices <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mspace></mspace><mo>(</mo><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>N</mi><mo>)</mo></math></span>. Define two elements <span><math><mi>A</mi><mo>,</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> of <em>T</em>: <span><math><mi>A</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>R</mi><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi></mrow></msubsup><msub><mrow><mi>θ</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup><msubsup><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mi>L</mi><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi></mrow></msubsup><msubsup><mrow><mi>θ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Assume <span><math><mi>N</mi><mo>≥</mo><mn>8</mn></math></span>. We first give a necessary and sufficient condition for <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> to satisfy the so-called tridiagonal relations. Then these results allow us to further display a necessary and sufficient condition for <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> acting on any irreducible <em>T</em>-module as a Leonard pair.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 115-134"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002940","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A Leonard pair is an ordered pair of diagonalizable linear transformations on a finite-dimensional vector space such that each of the two transformations acts on an eigenbasis for the other one in an irreducible tridiagonal form. In this paper, we consider Leonard pairs arising from a class of graded posets called dual polar spaces. Let P be a dual polar space with rank N and let T be its incident algebra (over the complex field) generated by the raising matrix R, the lowering matrix L and the projection matrices Fi(0iN). Define two elements A,A of T: A=i=0N1αiRFi+i=0NθiFi and A=i=1NαiLFi+i=0NθiFi. Assume N8. We first give a necessary and sufficient condition for A and A to satisfy the so-called tridiagonal relations. Then these results allow us to further display a necessary and sufficient condition for A and A acting on any irreducible T-module as a Leonard pair.
由双极空间产生的伦纳德对
伦纳德对是有限维向量空间上的可对角线性变换的有序对,使得两个变换中的每一个都以不可约的三对角形式作用于另一个变换的特征基上。在本文中,我们考虑由一类称为对偶极空间的梯度序集产生的伦纳德对。设P为秩为N的对偶极空间,设T为其由上升矩阵R、下降矩阵L和投影矩阵Fi(0≤i≤N)生成的(复域上的)事件代数。定义T的两个元素A,A·:A=∑i=0N−1αiRFi+∑i=0Nθ ifi和A·=∑i=1Nαi LFi+∑i=0Nθ Fi。假设N≥8。我们首先给出a和a *满足所谓三对角关系的充分必要条件。然后,这些结果使我们进一步证明了a和a α作为伦纳德对作用于任何不可约t模的充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信