{"title":"ROSE: A Universal Neural Grammar.","authors":"Elliot Murphy","doi":"10.1080/17588928.2025.2523875","DOIUrl":null,"url":null,"abstract":"<p><p>Processing natural language syntax requires a negotiation between symbolic and subsymbolic representations. Building on the recent representation, operation, structure, encoding (ROSE) neurocomputational architecture for syntax that scales from single units to inter-areal dynamics, I discuss the prospects of reconciling the neural code for hierarchical syntax with predictive processes. Here, the higher levels of ROSE provide instructions for symbolic phrase structure representations (S/E), while the lower levels provide probabilistic aspects of linguistic processing (R/O), with different types of cross-frequency coupling being hypothesized to interface these domains. I argue that ROSE provides a possible infrastructure for flexibly implementing distinct types of minimalist grammar parsers for the real-time processing of language. This perspective helps furnish a more restrictive 'core language network' in the brain than contemporary approaches that isolate general sentence composition. I define the language network as being critically involved in executing specific parsing operations (i.e. establishing phrasal categories, tree-structure depth, resolving dependencies, and retrieving proprietary lexical representations), capturing these network-defining operations jointly with probabilistic aspects of parsing. ROSE offers a 'mesoscopic protectorate' for natural language; an intermediate level of emergent organizational complexity that demands multi-scale modeling. By drawing principled relations across computational, algorithmic and implementational Marrian levels, ROSE offers new constraints on what a unified neurocomputational settlement for natural language syntax might look like, providing a tentative scaffold for a 'Universal Neural Grammar' - a species-specific format for neurally organizing the construction of compositional syntactic structures, which matures in accordance with a genetically determined biological matrix.</p>","PeriodicalId":10413,"journal":{"name":"Cognitive Neuroscience","volume":" ","pages":"1-32"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17588928.2025.2523875","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Processing natural language syntax requires a negotiation between symbolic and subsymbolic representations. Building on the recent representation, operation, structure, encoding (ROSE) neurocomputational architecture for syntax that scales from single units to inter-areal dynamics, I discuss the prospects of reconciling the neural code for hierarchical syntax with predictive processes. Here, the higher levels of ROSE provide instructions for symbolic phrase structure representations (S/E), while the lower levels provide probabilistic aspects of linguistic processing (R/O), with different types of cross-frequency coupling being hypothesized to interface these domains. I argue that ROSE provides a possible infrastructure for flexibly implementing distinct types of minimalist grammar parsers for the real-time processing of language. This perspective helps furnish a more restrictive 'core language network' in the brain than contemporary approaches that isolate general sentence composition. I define the language network as being critically involved in executing specific parsing operations (i.e. establishing phrasal categories, tree-structure depth, resolving dependencies, and retrieving proprietary lexical representations), capturing these network-defining operations jointly with probabilistic aspects of parsing. ROSE offers a 'mesoscopic protectorate' for natural language; an intermediate level of emergent organizational complexity that demands multi-scale modeling. By drawing principled relations across computational, algorithmic and implementational Marrian levels, ROSE offers new constraints on what a unified neurocomputational settlement for natural language syntax might look like, providing a tentative scaffold for a 'Universal Neural Grammar' - a species-specific format for neurally organizing the construction of compositional syntactic structures, which matures in accordance with a genetically determined biological matrix.
期刊介绍:
Cognitive Neuroscience publishes high quality discussion papers and empirical papers on any topic in the field of cognitive neuroscience including perception, attention, memory, language, action, social cognition, and executive function. The journal covers findings based on a variety of techniques such as fMRI, ERPs, MEG, TMS, and focal lesion studies. Contributions that employ or discuss multiple techniques to shed light on the spatial-temporal brain mechanisms underlying a cognitive process are encouraged.