{"title":"Cost and power-consumption analysis for power profile monitoring with multiple monitors per link in optical networks","authors":"Qiaolun Zhang , Patricia Layec , Alix May , Annalisa Morea , Aryanaz Attarpour , Massimo Tornatore","doi":"10.1016/j.osn.2025.100813","DOIUrl":null,"url":null,"abstract":"<div><div>As deploying large amounts of monitoring equipment results in elevated cost and power consumption, novel low-cost monitoring methods are being continuously investigated. A new technique called <em>Power Profile Monitoring</em> (PPM) has recently gained traction thanks to its ability to monitor an entire lightpath using a single post-processing unit at the lightpath receiver. PPM does not require to deploy an individual monitor for each span, as in the traditional monitoring technique using <em>Optical Time-Domain Reflectometer</em> (OTDR). In this work, we aim to quantify the cost and power consumption of PPM (using OTDR as a baseline reference), as this analysis can provide guidelines for the implementation and deployment of PPM. First, we discuss how PPM and OTDR monitors are deployed, and we formally state a new Optimized Monitoring Placement (OMP) problem for PPM. Solving the OMP problem allows to identify the minimum number of PPM monitors that guarantees that all links in the networks are monitored by at least <span><math><mi>n</mi></math></span> PPM monitors (note that using <span><math><mrow><mi>n</mi><mo>></mo><mn>1</mn></mrow></math></span> allows for increased monitoring accuracy). We prove the NP-hardness of the OMP problem and formulate it using an Integer Linear Programming (ILP) model. Finally, we also devise a heuristic algorithm for the OMP problem to scale to larger topologies. Our numerical results, obtained on realistic topologies, suggest that the cost (and power) of one PPM module should be lower than 2.6 times that of one OTDR for nation-wide and 10.2 times for continental-wide topology.</div></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"57 ","pages":"Article 100813"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427725000207","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
As deploying large amounts of monitoring equipment results in elevated cost and power consumption, novel low-cost monitoring methods are being continuously investigated. A new technique called Power Profile Monitoring (PPM) has recently gained traction thanks to its ability to monitor an entire lightpath using a single post-processing unit at the lightpath receiver. PPM does not require to deploy an individual monitor for each span, as in the traditional monitoring technique using Optical Time-Domain Reflectometer (OTDR). In this work, we aim to quantify the cost and power consumption of PPM (using OTDR as a baseline reference), as this analysis can provide guidelines for the implementation and deployment of PPM. First, we discuss how PPM and OTDR monitors are deployed, and we formally state a new Optimized Monitoring Placement (OMP) problem for PPM. Solving the OMP problem allows to identify the minimum number of PPM monitors that guarantees that all links in the networks are monitored by at least PPM monitors (note that using allows for increased monitoring accuracy). We prove the NP-hardness of the OMP problem and formulate it using an Integer Linear Programming (ILP) model. Finally, we also devise a heuristic algorithm for the OMP problem to scale to larger topologies. Our numerical results, obtained on realistic topologies, suggest that the cost (and power) of one PPM module should be lower than 2.6 times that of one OTDR for nation-wide and 10.2 times for continental-wide topology.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks