Tunable topological phase in 2D ScV6Sn6 kagome material

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chidiebere I. Nwaogbo , Sanjib K. Das , Chinedu E. Ekuma
{"title":"Tunable topological phase in 2D ScV6Sn6 kagome material","authors":"Chidiebere I. Nwaogbo ,&nbsp;Sanjib K. Das ,&nbsp;Chinedu E. Ekuma","doi":"10.1016/j.mtphys.2025.101780","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the topological properties of the vanadium-based 2D kagome metal ScV<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>Sn<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>, a ferromagnetic material with a magnetic moment of 0.86 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> per atom. Using <em>ab initio</em> methods, we explore spin–orbit coupling-induced gapped states and identify multiple Weyl-like crossings around the Fermi energy, confirming a Chern number <span><math><mrow><mrow><mo>|</mo><mi>C</mi><mo>|</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> and a large anomalous Hall effect (AHE) of 257 <span><math><msup><mrow><mi>Ω</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>cm<sup>−1</sup>. Our calculations reveal a transition from a topological semimetal to a trivial metallic phase at an electric field strength of <span><math><mo>≈</mo></math></span>0.40 eV/Å. These findings position 2D ScV<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>Sn<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> as a promising candidate for applications in modern electronic devices, with its tunable topological phases offering the potential for future innovations in quantum computing and material design.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"57 ","pages":"Article 101780"},"PeriodicalIF":9.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325001361","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the topological properties of the vanadium-based 2D kagome metal ScV6Sn6, a ferromagnetic material with a magnetic moment of 0.86 μB per atom. Using ab initio methods, we explore spin–orbit coupling-induced gapped states and identify multiple Weyl-like crossings around the Fermi energy, confirming a Chern number |C|=1 and a large anomalous Hall effect (AHE) of 257 Ω1cm−1. Our calculations reveal a transition from a topological semimetal to a trivial metallic phase at an electric field strength of 0.40 eV/Å. These findings position 2D ScV6Sn6 as a promising candidate for applications in modern electronic devices, with its tunable topological phases offering the potential for future innovations in quantum computing and material design.

Abstract Image

Abstract Image

二维ScV6Sn6 kagome材料的可调谐拓扑相
本文研究了二维钒基kagome金属ScV66Sn66的拓扑性质。ScV66Sn66是一种磁矩为0.86 μ b /原子的铁磁材料。使用从头算方法,我们探索了自旋轨道耦合引起的间隙态,并在费米能量周围识别了多个Weyl-like交叉,证实了一个chn数|C|=1|C|=1和一个大的反常霍尔效应(AHE)为257 Ω−1Ω−1cm−1。我们的计算揭示了在电场强度≈≈0.40 eV/Å下从拓扑半金属到平凡金属相的转变。这些发现将2D ScV66Sn66定位为现代电子设备应用的有前途的候选者,其可调谐的拓扑相位为量子计算和材料设计的未来创新提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信