Cell-type-specific cholinergic control of granular retrosplenial cortex with implications for angular velocity coding across brain states

IF 6.7 2区 医学 Q1 NEUROSCIENCES
Izabela Jedrasiak-Cape , Chloe Rybicki-Kler , Isla Brooks , Megha Ghosh , Ellen K.W. Brennan , Sameer Kailasa , Tyler G. Ekins , Alan Rupp , Omar J. Ahmed
{"title":"Cell-type-specific cholinergic control of granular retrosplenial cortex with implications for angular velocity coding across brain states","authors":"Izabela Jedrasiak-Cape ,&nbsp;Chloe Rybicki-Kler ,&nbsp;Isla Brooks ,&nbsp;Megha Ghosh ,&nbsp;Ellen K.W. Brennan ,&nbsp;Sameer Kailasa ,&nbsp;Tyler G. Ekins ,&nbsp;Alan Rupp ,&nbsp;Omar J. Ahmed","doi":"10.1016/j.pneurobio.2025.102804","DOIUrl":null,"url":null,"abstract":"<div><div>Cholinergic receptor activation enables the persistent firing of cortical pyramidal neurons, providing a key cellular basis for theories of spatial navigation involving working memory, path integration, and head direction encoding. The granular retrosplenial cortex (RSG) is important for spatially-guided behaviors, but how acetylcholine impacts RSG neurons is unknown. Here, we show that a transcriptomically, morphologically, and biophysically distinct RSG cell-type – the low-rheobase (LR) neuron – has a very distinct expression profile of cholinergic muscarinic receptors compared to all other neighboring excitatory neuronal subtypes. LR neurons do not fire persistently in response to cholinergic agonists, in stark contrast to all other principal neuronal subtypes examined within the RSG and across midline cortex. This lack of persistence allows LR neuron models to rapidly compute angular head velocity (AHV), independent of cholinergic changes seen during navigation. Thus, LR neurons can consistently compute AHV across brain states, highlighting the specialized RSG neural codes supporting navigation.</div></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"251 ","pages":"Article 102804"},"PeriodicalIF":6.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301008225000954","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cholinergic receptor activation enables the persistent firing of cortical pyramidal neurons, providing a key cellular basis for theories of spatial navigation involving working memory, path integration, and head direction encoding. The granular retrosplenial cortex (RSG) is important for spatially-guided behaviors, but how acetylcholine impacts RSG neurons is unknown. Here, we show that a transcriptomically, morphologically, and biophysically distinct RSG cell-type – the low-rheobase (LR) neuron – has a very distinct expression profile of cholinergic muscarinic receptors compared to all other neighboring excitatory neuronal subtypes. LR neurons do not fire persistently in response to cholinergic agonists, in stark contrast to all other principal neuronal subtypes examined within the RSG and across midline cortex. This lack of persistence allows LR neuron models to rapidly compute angular head velocity (AHV), independent of cholinergic changes seen during navigation. Thus, LR neurons can consistently compute AHV across brain states, highlighting the specialized RSG neural codes supporting navigation.
颗粒状脾后皮层细胞类型特异性胆碱能控制与大脑状态角速度编码的含义。
胆碱能受体的激活使皮质锥体神经元持续放电,为包括工作记忆、路径整合和头部方向编码在内的空间导航理论提供了关键的细胞基础。颗粒状脾后皮层(RSG)对空间引导行为很重要,但乙酰胆碱如何影响RSG神经元尚不清楚。在这里,我们展示了一种转录组学、形态学和生物物理上不同的RSG细胞类型-低流变酶(LR)神经元-与所有其他邻近的兴奋性神经元亚型相比,具有非常独特的胆碱能毒蕈碱受体表达谱。LR神经元对胆碱能激动剂的反应不会持续放电,这与在RSG和中线皮层内检查的所有其他主要神经元亚型形成鲜明对比。这种持续性的缺乏使得LR神经元模型能够快速计算角头速度(AHV),而不依赖于导航过程中所见的胆碱能变化。因此,LR神经元可以在不同的大脑状态下一致地计算AHV,突出显示支持导航的特殊RSG神经代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Neurobiology
Progress in Neurobiology 医学-神经科学
CiteScore
12.80
自引率
1.50%
发文量
107
审稿时长
33 days
期刊介绍: Progress in Neurobiology is an international journal that publishes groundbreaking original research, comprehensive review articles and opinion pieces written by leading researchers. The journal welcomes contributions from the broad field of neuroscience that apply neurophysiological, biochemical, pharmacological, molecular biological, anatomical, computational and behavioral analyses to problems of molecular, cellular, developmental, systems, and clinical neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信