Zhendong Zhang , Zhuang Guo , Lubo Cao , Qiangchuan Hou , Zhongjun Liu , Ji'an Zhong , Nanshan Liu , Xin Mei , Yurong Wang
{"title":"Dissecting the microbial, physicochemical, and flavor dynamics of core and peel layers in Houhuo Daqu: Insights into quality regulation","authors":"Zhendong Zhang , Zhuang Guo , Lubo Cao , Qiangchuan Hou , Zhongjun Liu , Ji'an Zhong , Nanshan Liu , Xin Mei , Yurong Wang","doi":"10.1016/j.foodres.2025.116992","DOIUrl":null,"url":null,"abstract":"<div><div>Houhuo <em>Daqu</em> (HHD) exhibits significant heterogeneity between its core and peel layers, yet their differences remain underexplored. This study integrates metagenomic sequencing and electronic sensory technologies to compare the physicochemical properties, microbial communities, and flavor profiles of HHD's core and peel. Results reveal distinct microbial communities and diversity between the layers. Both are dominated by bacteria (>90 % relative abundance). The core shows significantly higher relative abundance of <em>Bacillus licheniformis</em>, <em>Bacillus haynesii</em>, and <em>Bacillus paralicheniformis</em>, while the peel has elevated levels of <em>Streptomyces</em> sp. NHF165, <em>Pantoea agglomerans</em>, and <em>Lactiplantibacillus plantarum</em>. <em>Bacillus licheniformis</em> is linked to acetic acid biosynthesis. Flavor analysis indicates both layers are rich in pyrazines, contributing to HHD's distinctive aroma. Enzyme activities differed markedly between the core and peel. Structural equation modeling, regression, and ENVFIT analyses show that amino acid nitrogen directly influences enzymatic activity and indirectly affects it by shaping microbial community and diversity. Additionally, amino acid nitrogen significantly impacts HHD's taste and aroma, modulated by starch and ash content. These findings highlight amino acid nitrogen as a key factor for controlling HHD quality in future production.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"219 ","pages":"Article 116992"},"PeriodicalIF":7.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996925013304","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Houhuo Daqu (HHD) exhibits significant heterogeneity between its core and peel layers, yet their differences remain underexplored. This study integrates metagenomic sequencing and electronic sensory technologies to compare the physicochemical properties, microbial communities, and flavor profiles of HHD's core and peel. Results reveal distinct microbial communities and diversity between the layers. Both are dominated by bacteria (>90 % relative abundance). The core shows significantly higher relative abundance of Bacillus licheniformis, Bacillus haynesii, and Bacillus paralicheniformis, while the peel has elevated levels of Streptomyces sp. NHF165, Pantoea agglomerans, and Lactiplantibacillus plantarum. Bacillus licheniformis is linked to acetic acid biosynthesis. Flavor analysis indicates both layers are rich in pyrazines, contributing to HHD's distinctive aroma. Enzyme activities differed markedly between the core and peel. Structural equation modeling, regression, and ENVFIT analyses show that amino acid nitrogen directly influences enzymatic activity and indirectly affects it by shaping microbial community and diversity. Additionally, amino acid nitrogen significantly impacts HHD's taste and aroma, modulated by starch and ash content. These findings highlight amino acid nitrogen as a key factor for controlling HHD quality in future production.
期刊介绍:
Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.