{"title":"Sorafenib Resistance in Hepatocellular Carcinoma: Emerging Molecular Insights from Long Non-Coding RNAs.","authors":"Dengke Jia, Yaping He, Qianle Chen, Hao Wu, Yawu Zhang","doi":"10.2174/0113816128371240250619102820","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sorafenib is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC), but its clinical efficacy is often compromised by the acquisition of drug resistance. Various cancers, including HCC, are affected by long non-coding RNA (lncRNA), but the mechanisms underlying HCC sorafenib resistance have not been extensively studied. This article aims to summarize the recently reported pathways associated with sorafenib resistance and discusses potential applications for the treatment of HCC.</p><p><strong>Methods: </strong>Relevant studies on the resistance of HCC to anti-tumor drugs were retrieved from PubMed. Given the compelling evidence that sorafenib is an effective treatment for advanced HCC, we analyzed the research papers on lncRNA and sorafenib resistance in HCC in the PubMed system in the past decade and found that lncRNA may be involved in sorafenib resistance in HCC through multiple pathways.</p><p><strong>Results: </strong>lncRNA is widely involved in the resistance mechanism of HCC to sorafenib. Recent studies have revealed that numerous lncRNAs, such as NEAT1, affect the sensitivity of HCC to sorafenib through various mechanisms, including autophagy and AKT signaling pathways.</p><p><strong>Conclusion: </strong>lncRNAs play a pivotal role in modulating HCC resistance to sorafenib. And lncRNA is expected to become a new solution to the resistance of sorafenib and other targeted drugs.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128371240250619102820","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sorafenib is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC), but its clinical efficacy is often compromised by the acquisition of drug resistance. Various cancers, including HCC, are affected by long non-coding RNA (lncRNA), but the mechanisms underlying HCC sorafenib resistance have not been extensively studied. This article aims to summarize the recently reported pathways associated with sorafenib resistance and discusses potential applications for the treatment of HCC.
Methods: Relevant studies on the resistance of HCC to anti-tumor drugs were retrieved from PubMed. Given the compelling evidence that sorafenib is an effective treatment for advanced HCC, we analyzed the research papers on lncRNA and sorafenib resistance in HCC in the PubMed system in the past decade and found that lncRNA may be involved in sorafenib resistance in HCC through multiple pathways.
Results: lncRNA is widely involved in the resistance mechanism of HCC to sorafenib. Recent studies have revealed that numerous lncRNAs, such as NEAT1, affect the sensitivity of HCC to sorafenib through various mechanisms, including autophagy and AKT signaling pathways.
Conclusion: lncRNAs play a pivotal role in modulating HCC resistance to sorafenib. And lncRNA is expected to become a new solution to the resistance of sorafenib and other targeted drugs.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.