Experimental and Computational Investigation of Fluorene Single Crystal for Optoelectronic and Scintillator Applications

IF 1.9 4区 材料科学 Q3 Chemistry
Saravanan Chandran, Ravikumar Nattudurai, Martin Britto Dhas Sathiyadhas Amalapushpam, Ikhyun Kima, Anitha Kandasamy, Jeyanthinath Mayandi
{"title":"Experimental and Computational Investigation of Fluorene Single Crystal for Optoelectronic and Scintillator Applications","authors":"Saravanan Chandran,&nbsp;Ravikumar Nattudurai,&nbsp;Martin Britto Dhas Sathiyadhas Amalapushpam,&nbsp;Ikhyun Kima,&nbsp;Anitha Kandasamy,&nbsp;Jeyanthinath Mayandi","doi":"10.1002/crat.202400261","DOIUrl":null,"url":null,"abstract":"<p>Fluorene (C<sub>13</sub>H<sub>10</sub>) single crystals (4 ×3 × 0.5 mm<sup>3</sup>) were grown via slow evaporation at room temperature to evaluate their potential for organic scintillator applications. Powder X-ray diffraction (PXRD) confirmed an orthorhombic crystal system. Ultravioletvisible (UVVis) spectroscopy showed a 3.7 eV optical band gap, 330 nm cutoff, and 52–70% transmittance. Proton nuclear magnetic resonance (<sup>1</sup>H NMR) validated aromatic and methylene environments. Thermal analysis (TGA/DTA) revealed stability up to 113 °C, with defined melting and decomposition points. Photoluminescence (PL) exhibited blue emission at 428 nm under 330 nm excitation. Fourier-transform infrared (FTIR) and Raman spectroscopy identified functional groups and vibrational modes. Fluorescence lifetimes measured by time-correlated single photon counting (TCSPC) were 1.1 ns (prompt) and 5.1 ns (delayed), supporting fast response behavior. Density functional theory (DFT) with the B3LYP/6−311G++ basis set and time-dependent DFT (TD-DFT) described the optimized structure, HOMOLUMO gap, electrostatic potential, and excited states. Hirshfeld surface analysis showed dominant H···H interactions (54.3%), indicating efficient packing and energy transfer. Overall, fluorene exhibits desirable optical, thermal, and electronic properties, making it a promising material for organic scintillation detectors.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"60 7","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400261","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorene (C13H10) single crystals (4 ×3 × 0.5 mm3) were grown via slow evaporation at room temperature to evaluate their potential for organic scintillator applications. Powder X-ray diffraction (PXRD) confirmed an orthorhombic crystal system. Ultravioletvisible (UVVis) spectroscopy showed a 3.7 eV optical band gap, 330 nm cutoff, and 52–70% transmittance. Proton nuclear magnetic resonance (1H NMR) validated aromatic and methylene environments. Thermal analysis (TGA/DTA) revealed stability up to 113 °C, with defined melting and decomposition points. Photoluminescence (PL) exhibited blue emission at 428 nm under 330 nm excitation. Fourier-transform infrared (FTIR) and Raman spectroscopy identified functional groups and vibrational modes. Fluorescence lifetimes measured by time-correlated single photon counting (TCSPC) were 1.1 ns (prompt) and 5.1 ns (delayed), supporting fast response behavior. Density functional theory (DFT) with the B3LYP/6−311G++ basis set and time-dependent DFT (TD-DFT) described the optimized structure, HOMOLUMO gap, electrostatic potential, and excited states. Hirshfeld surface analysis showed dominant H···H interactions (54.3%), indicating efficient packing and energy transfer. Overall, fluorene exhibits desirable optical, thermal, and electronic properties, making it a promising material for organic scintillation detectors.

Abstract Image

荧光单晶用于光电和闪烁体的实验与计算研究
在室温下通过缓慢蒸发生长芴(C13H10)单晶(4 ×3 × 0.5 mm3),以评估其在有机闪烁体中的应用潜力。粉末x射线衍射(PXRD)证实为正交晶系。紫外可见(UVVis)光谱结果表明,该材料的带隙为3.7 eV,截止波长为330 nm,透过率为52 ~ 70%。质子核磁共振(1H NMR)验证芳香和亚甲基环境。热分析(TGA/DTA)显示稳定性高达113°C,具有确定的熔点和分解点。在330nm的激发下,光致发光(PL)表现出428nm的蓝色发射。傅里叶变换红外(FTIR)和拉曼光谱识别了官能团和振动模式。时间相关单光子计数(TCSPC)测量的荧光寿命分别为1.1 ns(提示)和5.1 ns(延迟),支持快速响应行为。基于B3LYP/6−311g++基集的密度泛函理论(DFT)和时间相关的DFT (TD-DFT)描述了优化后的结构、HOMOLUMO间隙、静电势和激发态。Hirshfeld表面分析显示H···H相互作用占主导地位(54.3%),表明有效的填料和能量传递。总的来说,芴具有理想的光学、热学和电子特性,使其成为有机闪烁探测器的有前途的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
121
审稿时长
1.9 months
期刊介绍: The journal Crystal Research and Technology is a pure online Journal (since 2012). Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of -crystal growth techniques and phenomena (including bulk growth, thin films) -modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals) -industrial crystallisation -application of crystals in materials science, electronics, data storage, and optics -experimental, simulation and theoretical studies of the structural properties of crystals -crystallographic computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信