Zaigham Saeed Toor , Renhao Wu , Muhammad Raihan Hashmi , Jeong Ah Lee , Xiaoqing Li , Harada Yuji , Haiming Zhang , Hyoung Seop Kim
{"title":"Computation- and process-based design for advanced structural high-entropy alloy development and analyses: A critical review","authors":"Zaigham Saeed Toor , Renhao Wu , Muhammad Raihan Hashmi , Jeong Ah Lee , Xiaoqing Li , Harada Yuji , Haiming Zhang , Hyoung Seop Kim","doi":"10.1016/j.pmatsci.2025.101534","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past decades, high-entropy alloys (HEAs) have been rapidly designed, developed, prepared, and tested to achieve superior performance across a multitude of applications. Computational materials science driven design techniques, including molecular dynamics, density functional theory, calculation of phase diagrams, phase-field modeling, crystal plasticity modelling, and artificial intelligence, combined with additive manufacturing and severe plastic deformation, present unprecedented opportunities to tailor microstructural features with remarkable flexibility and feasibility. This integration significantly enhances material properties. This review paper focuses on the computation-driven and processing-guided designs for structural HEAs (SHEAs), focusing on the relationship among materials, processing, microstructures, and properties. A succinct introduction to the computational design of SHEAs is first presented. Following this, we delve into the complex interplay between computational microstructures at various scales and the mechanical properties of SHEAs, revealing the underlying mechanisms. Additionally, we explore the distinctive features, advantages, and practical applications of these promising materials have been further explored. In conclusion, we address the prevailing challenges and anticipate future prospects in this burgeoning field.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"155 ","pages":"Article 101534"},"PeriodicalIF":33.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525001124","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past decades, high-entropy alloys (HEAs) have been rapidly designed, developed, prepared, and tested to achieve superior performance across a multitude of applications. Computational materials science driven design techniques, including molecular dynamics, density functional theory, calculation of phase diagrams, phase-field modeling, crystal plasticity modelling, and artificial intelligence, combined with additive manufacturing and severe plastic deformation, present unprecedented opportunities to tailor microstructural features with remarkable flexibility and feasibility. This integration significantly enhances material properties. This review paper focuses on the computation-driven and processing-guided designs for structural HEAs (SHEAs), focusing on the relationship among materials, processing, microstructures, and properties. A succinct introduction to the computational design of SHEAs is first presented. Following this, we delve into the complex interplay between computational microstructures at various scales and the mechanical properties of SHEAs, revealing the underlying mechanisms. Additionally, we explore the distinctive features, advantages, and practical applications of these promising materials have been further explored. In conclusion, we address the prevailing challenges and anticipate future prospects in this burgeoning field.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.