{"title":"Impairment of the blood brain barrier accelerates a negative ultraslow potential in the locust CNS.","authors":"R Meldrum Robertson, Andrew Donini, Yuyang Wang","doi":"10.1152/jn.00191.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Insects provide useful models for investigating evolutionarily conserved mechanisms underlying electrical events associated with brain injury and death. Spreading depolarizations (SD) are transient events that propagate through neuropil whereas the negative ultraslow potential (NUP) is sustained and reflects accumulating damage in the tissue. We used the locust, <i>Locusta migratoria</i>, to investigate ion homeostasis at the blood brain barrier (BBB) during SD and NUP induced by treatment with the Na<sup>+</sup>/K<sup>+</sup>-ATPase inhibitor, ouabain. We found that sustained SD caused by the metabolic inhibitor, sodium azide, was associated with a large reduction of K<sup>+</sup> efflux through the BBB at ganglia (= grey matter) but not at connectives (= white matter). This was accompanied by a large increase in tissue resistivity but no conductance changes of identified motoneuron dendrites in the neuropil. Males recovered more slowly from ouabain-induced SD, as previously described for anoxic SD. Impairment of barrier functions of the BBB pharmacologically with cyclosporin A or DIDS, or by cutting nerve roots, accelerated the NUP, thus promoting earlier and more frequent SD, but had no effect on the temporal parameters of SD. We conclude that the mechanisms underlying onset and recovery of SD are minimally affected by the damage associated with the NUP. We suggest that future research using tissue-specific genetic approaches in <i>Drosophila</i> to target identified molecular structures of the BBB are likely to be fruitful.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00191.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Insects provide useful models for investigating evolutionarily conserved mechanisms underlying electrical events associated with brain injury and death. Spreading depolarizations (SD) are transient events that propagate through neuropil whereas the negative ultraslow potential (NUP) is sustained and reflects accumulating damage in the tissue. We used the locust, Locusta migratoria, to investigate ion homeostasis at the blood brain barrier (BBB) during SD and NUP induced by treatment with the Na+/K+-ATPase inhibitor, ouabain. We found that sustained SD caused by the metabolic inhibitor, sodium azide, was associated with a large reduction of K+ efflux through the BBB at ganglia (= grey matter) but not at connectives (= white matter). This was accompanied by a large increase in tissue resistivity but no conductance changes of identified motoneuron dendrites in the neuropil. Males recovered more slowly from ouabain-induced SD, as previously described for anoxic SD. Impairment of barrier functions of the BBB pharmacologically with cyclosporin A or DIDS, or by cutting nerve roots, accelerated the NUP, thus promoting earlier and more frequent SD, but had no effect on the temporal parameters of SD. We conclude that the mechanisms underlying onset and recovery of SD are minimally affected by the damage associated with the NUP. We suggest that future research using tissue-specific genetic approaches in Drosophila to target identified molecular structures of the BBB are likely to be fruitful.
期刊介绍:
The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.