Collisional Cross-Section Prediction for Multiconformational Peptide Ions with IM2Deep.

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Analytical Chemistry Pub Date : 2025-07-22 Epub Date: 2025-07-08 DOI:10.1021/acs.analchem.5c01142
Robbe Devreese, Alireza Nameni, Arthur Declercq, Emmy Terryn, Ralf Gabriels, Francis Impens, Kris Gevaert, Lennart Martens, Robbin Bouwmeester
{"title":"Collisional Cross-Section Prediction for Multiconformational Peptide Ions with IM2Deep.","authors":"Robbe Devreese, Alireza Nameni, Arthur Declercq, Emmy Terryn, Ralf Gabriels, Francis Impens, Kris Gevaert, Lennart Martens, Robbin Bouwmeester","doi":"10.1021/acs.analchem.5c01142","DOIUrl":null,"url":null,"abstract":"<p><p>Peptide collisional cross-section (CCS) prediction is complicated by the tendency of peptide ions to exhibit multiple conformations in the gas phase. This adds further complexity to downstream analysis of proteomics data, for example for identification or quantification through feature finding. Here, we present an improved version of IM2Deep that is trained on a carefully curated data set to predict CCS values of multiconformational peptides. The training data is derived from a large and comprehensive set of publicly available data sets. This comprehensive training data set together with a tailored architecture allows for the accurate CCS prediction of multiple peptide conformational states. Furthermore, the enhanced IM2Deep model also retains high precision for peptides with a single observed conformation. IM2Deep is publicly available under a permissive open-source license at https://github.com/compomics/IM2Deep.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":"15113-15121"},"PeriodicalIF":6.7000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c01142","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Peptide collisional cross-section (CCS) prediction is complicated by the tendency of peptide ions to exhibit multiple conformations in the gas phase. This adds further complexity to downstream analysis of proteomics data, for example for identification or quantification through feature finding. Here, we present an improved version of IM2Deep that is trained on a carefully curated data set to predict CCS values of multiconformational peptides. The training data is derived from a large and comprehensive set of publicly available data sets. This comprehensive training data set together with a tailored architecture allows for the accurate CCS prediction of multiple peptide conformational states. Furthermore, the enhanced IM2Deep model also retains high precision for peptides with a single observed conformation. IM2Deep is publicly available under a permissive open-source license at https://github.com/compomics/IM2Deep.

用IM2Deep预测多肽离子的碰撞截面。
由于多肽离子在气相中呈现多种构象的趋势,使得多肽碰撞截面(CCS)预测变得复杂。这进一步增加了蛋白质组学数据下游分析的复杂性,例如通过特征发现进行鉴定或量化。在这里,我们提出了一个改进版本的IM2Deep,它在一个精心策划的数据集上进行训练,以预测多构象肽的CCS值。训练数据来源于一组大型且全面的公开数据集。这种全面的训练数据集与量身定制的体系结构一起允许对多个肽构象状态进行准确的CCS预测。此外,增强的IM2Deep模型还保持了对具有单一观察构象的肽的高精度。IM2Deep在宽松的开源许可下可在https://github.com/compomics/IM2Deep上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信