Millet Bran Bound Phenolic Compounds Suppresses LPS-Induced Inflammatory Response in Macrophages and Liver Injury Mice via TLR4/NF-κB Signaling Pathway

IF 4 Q2 FOOD SCIENCE & TECHNOLOGY
eFood Pub Date : 2025-07-09 DOI:10.1002/efd2.70078
Ying-kun Cai, Jin-yue Sun, Ying-ying Chen, Meng-qi Zhang, Shu-tao Sun, Qi-dong Ren, Mu-xuan Wang, Mohamed A. Farag, Bo Zhang, Xu Guo, Chao Liu
{"title":"Millet Bran Bound Phenolic Compounds Suppresses LPS-Induced Inflammatory Response in Macrophages and Liver Injury Mice via TLR4/NF-κB Signaling Pathway","authors":"Ying-kun Cai,&nbsp;Jin-yue Sun,&nbsp;Ying-ying Chen,&nbsp;Meng-qi Zhang,&nbsp;Shu-tao Sun,&nbsp;Qi-dong Ren,&nbsp;Mu-xuan Wang,&nbsp;Mohamed A. Farag,&nbsp;Bo Zhang,&nbsp;Xu Guo,&nbsp;Chao Liu","doi":"10.1002/efd2.70078","DOIUrl":null,"url":null,"abstract":"<p>Millet bran, rich in bioactive phenolic compounds, holds potential for both nutritional and therapeutic applications. In this study, bound phenolic compounds were isolated from millet bran, yielding a potent fraction named BPS-2. UPLC-MS/MS detected 16 major phenolic compounds in BPS-2. In vitro assays revealed that BPS-2 exerted a significant anti-inflammatory activity in lipopolysaccharide (LPS)-induced RAW 264.7 macrophage, as manifested by reduced production of inflammatory mediators (IL-1β, IL-6, and TNF-α) and downregulation of the expression levels of the pro-inflammatory enzymes Cyclooxygenase-2 (COX-2) and nitric oxide synthase (iNOS). Network pharmacological analysis identified the suppression of the TLR4/NF-κB pathway as the primary mechanism mediating the anti-inflammatory activity of BPS-2, which was validated using the LPS-induced RAW 264.7 macrophage model and liver injury mice model. Western blot analysis revealed that BPS-2 significantly decreased the phosphorylation of IκBα and p65 to regulate the TLR4/NF-κB signaling pathway, thereby exerting anti-inflammatory activity. Molecular docking studies revealed strong interactions between the active compounds of BPS-2 and TLR4 through key amino acid residues, including Pro116, Thr114, and Arg105. These results underscore the potential application of millet bran bound phenolic compounds as naturally occurring anti-inflammatory substances.</p>","PeriodicalId":11436,"journal":{"name":"eFood","volume":"6 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/efd2.70078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eFood","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/efd2.70078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Millet bran, rich in bioactive phenolic compounds, holds potential for both nutritional and therapeutic applications. In this study, bound phenolic compounds were isolated from millet bran, yielding a potent fraction named BPS-2. UPLC-MS/MS detected 16 major phenolic compounds in BPS-2. In vitro assays revealed that BPS-2 exerted a significant anti-inflammatory activity in lipopolysaccharide (LPS)-induced RAW 264.7 macrophage, as manifested by reduced production of inflammatory mediators (IL-1β, IL-6, and TNF-α) and downregulation of the expression levels of the pro-inflammatory enzymes Cyclooxygenase-2 (COX-2) and nitric oxide synthase (iNOS). Network pharmacological analysis identified the suppression of the TLR4/NF-κB pathway as the primary mechanism mediating the anti-inflammatory activity of BPS-2, which was validated using the LPS-induced RAW 264.7 macrophage model and liver injury mice model. Western blot analysis revealed that BPS-2 significantly decreased the phosphorylation of IκBα and p65 to regulate the TLR4/NF-κB signaling pathway, thereby exerting anti-inflammatory activity. Molecular docking studies revealed strong interactions between the active compounds of BPS-2 and TLR4 through key amino acid residues, including Pro116, Thr114, and Arg105. These results underscore the potential application of millet bran bound phenolic compounds as naturally occurring anti-inflammatory substances.

Abstract Image

谷糠结合酚类化合物通过TLR4/NF-κB信号通路抑制lps诱导的巨噬细胞和肝损伤小鼠炎症反应
小米麸皮富含生物活性酚类化合物,具有营养和治疗应用的潜力。在本研究中,从谷糠中分离出结合的酚类化合物,得到一种名为BPS-2的有效组分。UPLC-MS/MS检测到BPS-2中16种主要酚类化合物。体外实验表明,BPS-2对脂多糖(LPS)诱导的RAW 264.7巨噬细胞具有显著的抗炎活性,表现为减少炎症介质(IL-1β、IL-6和TNF-α)的产生,下调促炎酶环氧化酶-2 (COX-2)和一氧化氮合酶(iNOS)的表达水平。网络药理学分析发现,抑制TLR4/NF-κB通路是介导BPS-2抗炎活性的主要机制,并通过lps诱导的RAW 264.7巨噬细胞模型和肝损伤小鼠模型验证了这一观点。Western blot分析显示,BPS-2可显著降低i -κB α和p65的磷酸化水平,调节TLR4/NF-κB信号通路,从而发挥抗炎作用。分子对接研究发现,BPS-2和TLR4的活性化合物通过Pro116、Thr114和Arg105等关键氨基酸残基存在强相互作用。这些结果强调了谷糠结合酚类化合物作为天然抗炎物质的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eFood
eFood food research-
CiteScore
6.00
自引率
0.00%
发文量
44
期刊介绍: eFood is the official journal of the International Association of Dietetic Nutrition and Safety (IADNS) which eFood aims to cover all aspects of food science and technology. The journal’s mission is to advance and disseminate knowledge of food science, and to promote and foster research into the chemistry, nutrition and safety of food worldwide, by supporting open dissemination and lively discourse about a wide range of the most important topics in global food and health. The Editors welcome original research articles, comprehensive reviews, mini review, highlights, news, short reports, perspectives and correspondences on both experimental work and policy management in relation to food chemistry, nutrition, food health and safety, etc. Research areas covered in the journal include, but are not limited to, the following: ● Food chemistry ● Nutrition ● Food safety ● Food and health ● Food technology and sustainability ● Food processing ● Sensory and consumer science ● Food microbiology ● Food toxicology ● Food packaging ● Food security ● Healthy foods ● Super foods ● Food science (general)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信