Shahram Dehdashti , Janis Nötzel , Peter van Loock
{"title":"Quantum capacity of a deformed bosonic dephasing channel","authors":"Shahram Dehdashti , Janis Nötzel , Peter van Loock","doi":"10.1016/j.osn.2025.100814","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, using the notion of nonlinear coherent states, we define a deformed bosonic dephasing channel modeling the impact of a Kerr medium on a quantum state, as it occurs, for instance, in quantum communication based on optical fibers. We show that, in certain regimes, the Kerr nonlinearity is able to compensate the dephasing. In addition, our studies reveal that the quantum capacity of the deformed bosonic dephasing channel can be greater than that of the undeformed, standard bosonic dephasing channel for certain nonlinearity parameters.</div></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"57 ","pages":"Article 100814"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427725000219","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, using the notion of nonlinear coherent states, we define a deformed bosonic dephasing channel modeling the impact of a Kerr medium on a quantum state, as it occurs, for instance, in quantum communication based on optical fibers. We show that, in certain regimes, the Kerr nonlinearity is able to compensate the dephasing. In addition, our studies reveal that the quantum capacity of the deformed bosonic dephasing channel can be greater than that of the undeformed, standard bosonic dephasing channel for certain nonlinearity parameters.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks