Hot carrier stress in junctionless gate-all-around nMOSFETs under different bias conditions

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Wen-Teng. Chang , Liang-I. Cai , Hung-Hsi Chen , Jen-Chien Li , Yao-Jen Lee
{"title":"Hot carrier stress in junctionless gate-all-around nMOSFETs under different bias conditions","authors":"Wen-Teng. Chang ,&nbsp;Liang-I. Cai ,&nbsp;Hung-Hsi Chen ,&nbsp;Jen-Chien Li ,&nbsp;Yao-Jen Lee","doi":"10.1016/j.sse.2025.109187","DOIUrl":null,"url":null,"abstract":"<div><div>In conventional long-channel MOSFETs, the most significant hot carrier degradation at inversion-mode junctions typically occurs when the gate voltage (V<sub>GS</sub>) is approximately half the drain voltage (V<sub>DS</sub>). This work investigates the impact of different V<sub>GS</sub>/V<sub>DS</sub> ratios (1:2, 1:1, and 2:1) on the electrical stress behavior of Junctionless Gate-All-Around (JLGAA) nMOSFETs. Unlike inversion-mode devices, JLGAA transistors exhibit more pronounced threshold voltage (V<sub>t</sub>) shifts under V<sub>GS</sub>/V<sub>DS</sub> ratios of 1:1 and 2:1 compared to 1:2, especially over longer stress durations. Interestingly, the 1:2 stress condition reveals a V<sub>t</sub> turnaround effect during the early stages of stress. TCAD simulations support these observations, showing that a 2:1 V<sub>GS</sub>/V<sub>DS</sub> ratio generates a stronger electric field across the gate oxide compared to other bias conditions.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"229 ","pages":"Article 109187"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125001327","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In conventional long-channel MOSFETs, the most significant hot carrier degradation at inversion-mode junctions typically occurs when the gate voltage (VGS) is approximately half the drain voltage (VDS). This work investigates the impact of different VGS/VDS ratios (1:2, 1:1, and 2:1) on the electrical stress behavior of Junctionless Gate-All-Around (JLGAA) nMOSFETs. Unlike inversion-mode devices, JLGAA transistors exhibit more pronounced threshold voltage (Vt) shifts under VGS/VDS ratios of 1:1 and 2:1 compared to 1:2, especially over longer stress durations. Interestingly, the 1:2 stress condition reveals a Vt turnaround effect during the early stages of stress. TCAD simulations support these observations, showing that a 2:1 VGS/VDS ratio generates a stronger electric field across the gate oxide compared to other bias conditions.
不同偏置条件下无结栅栅型nmosfet的热载流子应力
在传统的长沟道mosfet中,当栅极电压(VGS)约为漏极电压(VDS)的一半时,反转模式结处最显著的热载流子退化通常发生。本文研究了不同VGS/VDS比(1:2,1:1和2:1)对无结栅极全能(JLGAA) nmosfet电应力行为的影响。与反转模式器件不同,与1:2相比,JLGAA晶体管在VGS/VDS比为1:1和2:1时表现出更明显的阈值电压(Vt)偏移,特别是在较长的应力持续时间下。有趣的是,在1:2的应激条件下,在应激的早期阶段出现了Vt扭转效应。TCAD模拟支持这些观察结果,表明与其他偏置条件相比,2:1的VGS/VDS比在栅极氧化物上产生更强的电场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信