Di Shi , Xiang Wang , Yulin Deng , Huaijuan Zhou , Yilong Wang , Paul K. Chu , Jinhua Li
{"title":"Smart micro/nanorobots for drug delivery in the brain","authors":"Di Shi , Xiang Wang , Yulin Deng , Huaijuan Zhou , Yilong Wang , Paul K. Chu , Jinhua Li","doi":"10.1016/j.pmatsci.2025.101533","DOIUrl":null,"url":null,"abstract":"<div><div>Pharmacotherapy is the core approach for treating various brain diseases. However, the intricate anatomical structure and the blood–brain barrier (BBB) of the brain present challenges for intracerebral drug delivery and therapeutic efficacy. Although systemic administration and surgical interventions can alleviate symptoms, they are limited by low therapeutic effects and potential adverse side effects. Moreover, due to their complex pathogenesis, insidious development, and deep-seated lesions, brain diseases are difficult to diagnose accurately. To address these challenges, there is an urgent need to develop intelligent nanocarriers that can efficiently load drugs and penetrate the BBB for precise therapy of brain diseases. In this connection, micro/nanorobots (MNRs) are multifunctional drug carriers at the micro-nano scale, which possess exceptional penetration and targeting capabilities. Employing externally powered propulsion or chemical self-propulsion, MNRs can navigate in the brain and cross the BBB. This review comprehensively summarizes the recent advances and future outlook of smart MNR drug delivery systems for brain disease treatment. It covers broad topics from nanocarriers to active smart MNRs. Furthermore, it elucidates the therapeutic mechanisms of these smart MNR drug delivery systems in brain diseases based on pathogenesis and pathology. Our aim is to provide a reference for designing and developing novel smart MNRs for drug delivery in the brain, paving the way for their clinical applications in treating brain diseases.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"155 ","pages":"Article 101533"},"PeriodicalIF":33.6000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525001112","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmacotherapy is the core approach for treating various brain diseases. However, the intricate anatomical structure and the blood–brain barrier (BBB) of the brain present challenges for intracerebral drug delivery and therapeutic efficacy. Although systemic administration and surgical interventions can alleviate symptoms, they are limited by low therapeutic effects and potential adverse side effects. Moreover, due to their complex pathogenesis, insidious development, and deep-seated lesions, brain diseases are difficult to diagnose accurately. To address these challenges, there is an urgent need to develop intelligent nanocarriers that can efficiently load drugs and penetrate the BBB for precise therapy of brain diseases. In this connection, micro/nanorobots (MNRs) are multifunctional drug carriers at the micro-nano scale, which possess exceptional penetration and targeting capabilities. Employing externally powered propulsion or chemical self-propulsion, MNRs can navigate in the brain and cross the BBB. This review comprehensively summarizes the recent advances and future outlook of smart MNR drug delivery systems for brain disease treatment. It covers broad topics from nanocarriers to active smart MNRs. Furthermore, it elucidates the therapeutic mechanisms of these smart MNR drug delivery systems in brain diseases based on pathogenesis and pathology. Our aim is to provide a reference for designing and developing novel smart MNRs for drug delivery in the brain, paving the way for their clinical applications in treating brain diseases.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.