Pingyang Zhang, Shaodong Zhang, Yihan Qin, Tingting Du, Lei Wei, Xiangyu Li
{"title":"Machine learning-driven molecular dynamics decodes thermal tuning in graphene foam composites","authors":"Pingyang Zhang, Shaodong Zhang, Yihan Qin, Tingting Du, Lei Wei, Xiangyu Li","doi":"10.1038/s41524-025-01710-6","DOIUrl":null,"url":null,"abstract":"<p>Graphene foam (GF), synthesized via Chemical Vapor Deposition (CVD), has been proven to be the ideal bulk porous material. The addition of poly(dimethylsiloxane) (PDMS) within the porous structure enables enhancement of mechanical strength and alteration of heat transfer behavior. This study focuses on the thermodynamic behavior of GF/PDMS composites during deformation, and employs stochastic modeling and neuroevolution potential (NEP) for complex material modeling with precise prediction of microscopic mechanisms governing thermal property variations. The results demonstrate that the composite with a 5% doping rate of PDMS achieves the optimal mechanical performance and shows a 7.13-fold modulation in thermal resistance during the deformation from 40% stretching to 50% compression. Findings indicate PDMS fortifies structural stability while enabling dynamic thermal conductivity modulation in GF. This research provides critical insights into the micro-mechanisms of GF/PDMS composites and offers a theoretical foundation for applications in dynamic thermal management and self-powered sensor networks.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"20 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01710-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene foam (GF), synthesized via Chemical Vapor Deposition (CVD), has been proven to be the ideal bulk porous material. The addition of poly(dimethylsiloxane) (PDMS) within the porous structure enables enhancement of mechanical strength and alteration of heat transfer behavior. This study focuses on the thermodynamic behavior of GF/PDMS composites during deformation, and employs stochastic modeling and neuroevolution potential (NEP) for complex material modeling with precise prediction of microscopic mechanisms governing thermal property variations. The results demonstrate that the composite with a 5% doping rate of PDMS achieves the optimal mechanical performance and shows a 7.13-fold modulation in thermal resistance during the deformation from 40% stretching to 50% compression. Findings indicate PDMS fortifies structural stability while enabling dynamic thermal conductivity modulation in GF. This research provides critical insights into the micro-mechanisms of GF/PDMS composites and offers a theoretical foundation for applications in dynamic thermal management and self-powered sensor networks.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.