Ju-Hyung Ha , Joon-Hyeok Choe , Jisoo Kim , Dong Min Kim , Jaewoo Seo
{"title":"Effect of tool center point angles on drilling performance in robotic cortical bone procedures","authors":"Ju-Hyung Ha , Joon-Hyeok Choe , Jisoo Kim , Dong Min Kim , Jaewoo Seo","doi":"10.1016/j.medengphy.2025.104388","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effects of different tool center point (TCP) angles on drilling precision and accuracy in cortical bone using a six-axis robot. Tool paths were generated using simulation software, and various TCP angles and corresponding robot postures were implemented in a real-world setting. To assess dynamic characteristics, experimental modal analysis was performed to measure natural frequencies and damping ratios (DRs) across the different configurations. Based on these results, spindle displacement was measured to quantify vibrations during drilling, allowing identification of configurations associated with lower vibration levels. To validate these findings, drilling experiments were conducted on cortical bone specimens to compare cutting performance. The results showed a 20.77 % average reduction in drilling torque and a 7.42 % decrease in the delamination factor (DF), which affects the bonding strength between the cortical screw and the bone. These findings suggest that the selection of TCP angle parameters may influence drilling performance and hole quality, underlining the relevance of robotic-assisted drilling (RAD) angle control in cortical bone surgery.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"143 ","pages":"Article 104388"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325001079","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effects of different tool center point (TCP) angles on drilling precision and accuracy in cortical bone using a six-axis robot. Tool paths were generated using simulation software, and various TCP angles and corresponding robot postures were implemented in a real-world setting. To assess dynamic characteristics, experimental modal analysis was performed to measure natural frequencies and damping ratios (DRs) across the different configurations. Based on these results, spindle displacement was measured to quantify vibrations during drilling, allowing identification of configurations associated with lower vibration levels. To validate these findings, drilling experiments were conducted on cortical bone specimens to compare cutting performance. The results showed a 20.77 % average reduction in drilling torque and a 7.42 % decrease in the delamination factor (DF), which affects the bonding strength between the cortical screw and the bone. These findings suggest that the selection of TCP angle parameters may influence drilling performance and hole quality, underlining the relevance of robotic-assisted drilling (RAD) angle control in cortical bone surgery.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.