Javier Hernandez-Rueda, Ángel S. Sanz, Rosario Martínez-Herrero
{"title":"Engineering of self-bending surface plasmon polaritons through Hermite–Gaussian mode expansion","authors":"Javier Hernandez-Rueda, Ángel S. Sanz, Rosario Martínez-Herrero","doi":"10.1016/j.optlastec.2025.113462","DOIUrl":null,"url":null,"abstract":"<div><div>Surface plasmon polaritons have received much attention over the last decades in photonics or nanotechnology due to their inherent high sensitivity to metal surface variations (e.g., presence of adsorbates or changes in the roughness). It is thus expected that they will find promising major applications in widely cross-disciplinary areas, from material science to medicine. Here we introduce a novel theoretical framework suitable for designing new types of structured paraxial surface plasmon beams and controlling their propagation. More specifically, this method relies on a convenient Hermite-Gaussian mode expansion, which constitutes a complete basis set upon which new types of structured paraxial plasmon beams can be generated. The family of beams generated in this way presents a rather peculiar feature: they exhibit local intensity maxima at different propagation distances, which enables the control over where to place the beam energy. This, thus, opens up worthwhile pathways to manipulate light propagation along metal surfaces at the nanoscale. As a proof-of-concept, we provide numerical evidence of the feasibility of the method by analyzing the propagation of Airy-based surface plasmon polaritons along an air-silver interface.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"192 ","pages":"Article 113462"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399225010539","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Surface plasmon polaritons have received much attention over the last decades in photonics or nanotechnology due to their inherent high sensitivity to metal surface variations (e.g., presence of adsorbates or changes in the roughness). It is thus expected that they will find promising major applications in widely cross-disciplinary areas, from material science to medicine. Here we introduce a novel theoretical framework suitable for designing new types of structured paraxial surface plasmon beams and controlling their propagation. More specifically, this method relies on a convenient Hermite-Gaussian mode expansion, which constitutes a complete basis set upon which new types of structured paraxial plasmon beams can be generated. The family of beams generated in this way presents a rather peculiar feature: they exhibit local intensity maxima at different propagation distances, which enables the control over where to place the beam energy. This, thus, opens up worthwhile pathways to manipulate light propagation along metal surfaces at the nanoscale. As a proof-of-concept, we provide numerical evidence of the feasibility of the method by analyzing the propagation of Airy-based surface plasmon polaritons along an air-silver interface.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems