{"title":"Bridging neuroscience and AI: a survey on large language models for neurological signal interpretation.","authors":"Sreejith Chandrasekharan, Jisu Elsa Jacob","doi":"10.3389/fninf.2025.1561401","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalogram (EEG) signal analysis is important for the diagnosis of various neurological conditions. Traditional deep neural networks, such as convolutional networks, sequence-to-sequence networks, and hybrids of such neural networks were proven to be effective for a wide range of neurological disease classifications. However, these are limited by the requirement of a large dataset, extensive training, and hyperparameter tuning, which require expert-level machine learning knowledge. This survey paper aims to explore the ability of Large Language Models (LLMs) to transform existing systems of EEG-based disease diagnostics. LLMs have a vast background knowledge in neuroscience, disease diagnostics, and EEG signal processing techniques. Thus, these models are capable of achieving expert-level performance with minimal training data, nominal fine-tuning, and less computational overhead, leading to a shorter time to find effective solutions for diagnostics. Further, in comparison with traditional methods, LLM's capability to generate intermediate results and meaningful reasoning makes it more reliable and transparent. This paper delves into several use cases of LLM in EEG signal analysis and attempts to provide a comprehensive understanding of techniques in the domain that can be applied to different disease diagnostics. The study also strives to highlight challenges in the deployment of LLM models, ethical considerations, and bottlenecks in optimizing models due to requirements of specialized methods such as Low-Rank Adapation. In general, this survey aims to stimulate research in the area of EEG disease diagnostics by effectively using LLMs and associated techniques in machine learning pipelines.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1561401"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213581/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2025.1561401","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Electroencephalogram (EEG) signal analysis is important for the diagnosis of various neurological conditions. Traditional deep neural networks, such as convolutional networks, sequence-to-sequence networks, and hybrids of such neural networks were proven to be effective for a wide range of neurological disease classifications. However, these are limited by the requirement of a large dataset, extensive training, and hyperparameter tuning, which require expert-level machine learning knowledge. This survey paper aims to explore the ability of Large Language Models (LLMs) to transform existing systems of EEG-based disease diagnostics. LLMs have a vast background knowledge in neuroscience, disease diagnostics, and EEG signal processing techniques. Thus, these models are capable of achieving expert-level performance with minimal training data, nominal fine-tuning, and less computational overhead, leading to a shorter time to find effective solutions for diagnostics. Further, in comparison with traditional methods, LLM's capability to generate intermediate results and meaningful reasoning makes it more reliable and transparent. This paper delves into several use cases of LLM in EEG signal analysis and attempts to provide a comprehensive understanding of techniques in the domain that can be applied to different disease diagnostics. The study also strives to highlight challenges in the deployment of LLM models, ethical considerations, and bottlenecks in optimizing models due to requirements of specialized methods such as Low-Rank Adapation. In general, this survey aims to stimulate research in the area of EEG disease diagnostics by effectively using LLMs and associated techniques in machine learning pipelines.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.