Xianneng Chen, Qingbin Li, Yumin Liu, Shaoqing Guan, Pu Wang, Ziyi Xie, Xiangyu Tan, Dan Liu, Molin Shen, Can Gao, Shiming Zhang and Huanli Dong
{"title":"Dibenzothiophene sulfone-based n-type emissive organic semiconductor†","authors":"Xianneng Chen, Qingbin Li, Yumin Liu, Shaoqing Guan, Pu Wang, Ziyi Xie, Xiangyu Tan, Dan Liu, Molin Shen, Can Gao, Shiming Zhang and Huanli Dong","doi":"10.1039/D5TC00969C","DOIUrl":null,"url":null,"abstract":"<p >Developing high-mobility emissive organic semiconductors (OSCs) is crucial for organic light-emitting transistors (OLETs), which belong to a type of the smallest integrated optoelectronic devices, with great potential in next-generation display technologies. Although p-type high-mobility emissive OSCs have achieved considerable progress, n-type OSC materials have rarely been reported. Herein, we designed and synthesized an n-type dibenzothiophene sulfone-based emissive organic semiconductor of DPIDBSO with photoluminescence quantum yields (PLQYs) of 30% in the solid state. Interestingly, it was found that in the DPIDBSO crystal, the growth direction was along the short axis of the molecule rather than along the π–π stacking direction owing to multiple weak hydrogen bonds and the presence of a crystal growth dead zone. Leveraging this “special” crystal, DPIDBSO demonstrated typical n-type transport with an electron mobility of 0.17 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small>. More importantly, DPIDBSO-based devices with only Ag electrodes showed obvious electroluminescence with an immobile emission zone in the unipolar mode. This work provides deep insights into the development of n-type OSCs with tunable optoelectronic properties through the control of the aggregation state towards high-performance OLETs.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 26","pages":" 13448-13453"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00969c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing high-mobility emissive organic semiconductors (OSCs) is crucial for organic light-emitting transistors (OLETs), which belong to a type of the smallest integrated optoelectronic devices, with great potential in next-generation display technologies. Although p-type high-mobility emissive OSCs have achieved considerable progress, n-type OSC materials have rarely been reported. Herein, we designed and synthesized an n-type dibenzothiophene sulfone-based emissive organic semiconductor of DPIDBSO with photoluminescence quantum yields (PLQYs) of 30% in the solid state. Interestingly, it was found that in the DPIDBSO crystal, the growth direction was along the short axis of the molecule rather than along the π–π stacking direction owing to multiple weak hydrogen bonds and the presence of a crystal growth dead zone. Leveraging this “special” crystal, DPIDBSO demonstrated typical n-type transport with an electron mobility of 0.17 cm2 V−1 s−1. More importantly, DPIDBSO-based devices with only Ag electrodes showed obvious electroluminescence with an immobile emission zone in the unipolar mode. This work provides deep insights into the development of n-type OSCs with tunable optoelectronic properties through the control of the aggregation state towards high-performance OLETs.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors