{"title":"Polarity from the bottom up: a computational framework for predicting spontaneous polar order","authors":"Jordan Hobbs, Calum J. Gibb and Richard J. Mandle","doi":"10.1039/D5TC01641J","DOIUrl":null,"url":null,"abstract":"<p >So-called polar liquid crystals possess spontaneous long-range mutual orientation of their electric dipole moments, conferring bulk polarity to fluid phases of matter. The combination of polarity and fluidity leads to complex phase behaviour, and rich new physics, yet the limited understanding around how specific molecular features generate long-range polar ordering in a fluid is a hindrance to the development of new materials. In this work, we introduce a computational framework that probes the bimolecular potential energy landscape of candidate molecules, enabling us to dissect the role of directional intermolecular interactions in establishing polar order. In closely related families of materials we find conflicting preferences for (anti)parallel ordering which can be accounted for by specific interactions between molecules. Thus, our results allow us to argue that the presence (or absence) of polar order is a product of specific molecular features and strong directional intermolecular interactions rather than being simply a product of dipole–dipole forces. The design principles established can be leveraged to developing new polar liquid crystalline materials.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 26","pages":" 13367-13375"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc01641j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01641j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
So-called polar liquid crystals possess spontaneous long-range mutual orientation of their electric dipole moments, conferring bulk polarity to fluid phases of matter. The combination of polarity and fluidity leads to complex phase behaviour, and rich new physics, yet the limited understanding around how specific molecular features generate long-range polar ordering in a fluid is a hindrance to the development of new materials. In this work, we introduce a computational framework that probes the bimolecular potential energy landscape of candidate molecules, enabling us to dissect the role of directional intermolecular interactions in establishing polar order. In closely related families of materials we find conflicting preferences for (anti)parallel ordering which can be accounted for by specific interactions between molecules. Thus, our results allow us to argue that the presence (or absence) of polar order is a product of specific molecular features and strong directional intermolecular interactions rather than being simply a product of dipole–dipole forces. The design principles established can be leveraged to developing new polar liquid crystalline materials.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors