{"title":"A High-Gain Terahertz Metallic Modulated Metasurface Antenna With a Wide Gain Bandwidth","authors":"Jia-Hui Zhao;Chen-Yu Ding;Zhuo-Wei Miao;Stefano Maci;Zhang-Cheng Hao","doi":"10.1109/TTHZ.2025.3565204","DOIUrl":null,"url":null,"abstract":"Electrically large modulated metasurface antennas (MMAs) possess the advantages of simple feeding and absence of beam forming network, while achieving a high radiation gain. However, they suffer from limitation in the gain-bandwidth product. This article introduces a technique to expand the bandwidth of gain by utilizing a polarization selective surface (PSS). The PSS can generate a more uniform phase distribution and almost identical polarized directions above the MMA to improve its radiation performance, including the realized gain, gain bandwidth, sidelobe level, and cross-polarization level. Detailed analysis is presented and discussed. For experimental verification, a <italic>D</i>-band metallic MMA loaded with a PSS is fabricated and measured. The proposed metallic MMA is manufactured by a high-precision 3-D-printed technique and metalized using the magnetron-sputtering gold coating. The measured maximum realized gain is 30.5 dBi at 131 GHz with a measured 3-dB gain bandwidth of 9%, which approaches the theoretical limit found for such antennas. The proposed MMA shows potential superiorities for developing high-gain and low-profile THz antennas, even with an operating frequency over 300 GHz.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"15 4","pages":"694-703"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10980030/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Electrically large modulated metasurface antennas (MMAs) possess the advantages of simple feeding and absence of beam forming network, while achieving a high radiation gain. However, they suffer from limitation in the gain-bandwidth product. This article introduces a technique to expand the bandwidth of gain by utilizing a polarization selective surface (PSS). The PSS can generate a more uniform phase distribution and almost identical polarized directions above the MMA to improve its radiation performance, including the realized gain, gain bandwidth, sidelobe level, and cross-polarization level. Detailed analysis is presented and discussed. For experimental verification, a D-band metallic MMA loaded with a PSS is fabricated and measured. The proposed metallic MMA is manufactured by a high-precision 3-D-printed technique and metalized using the magnetron-sputtering gold coating. The measured maximum realized gain is 30.5 dBi at 131 GHz with a measured 3-dB gain bandwidth of 9%, which approaches the theoretical limit found for such antennas. The proposed MMA shows potential superiorities for developing high-gain and low-profile THz antennas, even with an operating frequency over 300 GHz.
期刊介绍:
IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.