Migration and Accumulation Behavior of Moisture in Insulating Pressboard Under AC Field by Terahertz Imaging Technology

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Meicun Kang;Lijun Yang;Yuxin He;Li Cheng;Hao Luo
{"title":"Migration and Accumulation Behavior of Moisture in Insulating Pressboard Under AC Field by Terahertz Imaging Technology","authors":"Meicun Kang;Lijun Yang;Yuxin He;Li Cheng;Hao Luo","doi":"10.1109/TTHZ.2025.3557318","DOIUrl":null,"url":null,"abstract":"Moisture content is a decisive factor for the electrical performance of oil–paper insulation. As a strongly polar substance, moisture can easily accumulate in areas with high field strength, distorting the local electric field and triggering electrical discharges. However, due to the lack of suitable nondestructive observation means, no experimental and observational studies have been conducted on the effect of the electric field on the migration and aggregation behavior of moisture in insulating pressboard. In this work, a terahertz imaging technique is introduced to observe the diffusive migration of moisture in insulating pressboard and focus on the effect of the ac electric field on this process. Results show that moisture migration in insulating pressboard consists of two parts: migration from solid-phase insulating pressboard to liquid-phase insulating oil and migration occurring in solid-phase insulating pressboard. The addition of the ac electric field considerably increases the diffusion rate of moisture and accelerates the migration of moisture from the solid phase to the liquid phase. Moreover, the electric field makes the moisture in the solid-phase pressboard migrate and accumulate toward the high-field-strength region near electrodes, and this process is accelerated by the increase in temperature. Under the experimental conditions of this study, the maximum relative deviation between the moisture content in the pressboard near both sides of the electrode and the average moisture content is 34.7%.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"15 4","pages":"622-633"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10960553/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Moisture content is a decisive factor for the electrical performance of oil–paper insulation. As a strongly polar substance, moisture can easily accumulate in areas with high field strength, distorting the local electric field and triggering electrical discharges. However, due to the lack of suitable nondestructive observation means, no experimental and observational studies have been conducted on the effect of the electric field on the migration and aggregation behavior of moisture in insulating pressboard. In this work, a terahertz imaging technique is introduced to observe the diffusive migration of moisture in insulating pressboard and focus on the effect of the ac electric field on this process. Results show that moisture migration in insulating pressboard consists of two parts: migration from solid-phase insulating pressboard to liquid-phase insulating oil and migration occurring in solid-phase insulating pressboard. The addition of the ac electric field considerably increases the diffusion rate of moisture and accelerates the migration of moisture from the solid phase to the liquid phase. Moreover, the electric field makes the moisture in the solid-phase pressboard migrate and accumulate toward the high-field-strength region near electrodes, and this process is accelerated by the increase in temperature. Under the experimental conditions of this study, the maximum relative deviation between the moisture content in the pressboard near both sides of the electrode and the average moisture content is 34.7%.
用太赫兹成像技术研究交流电场下绝缘压板中水分的迁移和积累行为
含水率是决定油纸绝缘电气性能的决定性因素。作为一种强极性物质,水分很容易在高场强区域积聚,使局部电场扭曲,引发放电。然而,由于缺乏合适的无损观测手段,目前还没有对电场对绝缘压板中水分迁移和聚集行为的影响进行实验和观测研究。本文采用太赫兹成像技术观察了绝缘纸板中水分的扩散迁移过程,并着重研究了交流电场对这一过程的影响。结果表明:保温压板内的水分迁移由两部分组成:由固相保温压板向液相保温油的迁移和发生在固相保温压板内的迁移。交流电场的加入大大增加了水分的扩散速率,加速了水分从固相向液相的迁移。此外,电场使固相压板中的水分向靠近电极的高场强区域迁移积累,温度的升高加速了这一过程。在本研究实验条件下,靠近电极两侧的压板含水率与平均含水率的最大相对偏差为34.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Terahertz Science and Technology
IEEE Transactions on Terahertz Science and Technology ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
7.10
自引率
9.40%
发文量
102
期刊介绍: IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信