{"title":"Parkinson’s disease and the gut microbiota connection: unveiling dysbiosis and exploring therapeutic horizons","authors":"Satyam Yadav, Rojin G. Raj","doi":"10.1016/j.neuroscience.2025.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by dopaminergic neuronal loss, α-synuclein aggregation, and sustained neuroinflammation. Emerging evidence supports the gut-brain-microbiota axis as a pivotal player in the disease’s pathogenesis. Dysbiosis, disruptions in the gut microbial composition, has been consistently observed in individuals with PD, with notable reductions in beneficial, short-chain fatty acid-producing bacteria and elevations in pro-inflammatory microbial species. These alterations contribute to increased intestinal permeability, systemic inflammation, and heightened neuroinflammatory responses that may drive α-synuclein misfolding and dopaminergic degeneration. In addition, microbial metabolites, including lipopolysaccharides and amyloid proteins such as curli, may promote neurodegeneration via immune and molecular mimicry pathways. Recent advances highlight the bidirectional influence of the microbiota-gut-brain axis on PD symptoms, ranging from motor deficits to non-motor features like constipation, depression, and cognitive decline. Several microbiota-modulating interventions, including probiotics, prebiotics, dietary strategies, antibiotics, and fecal microbiota transplantation, have demonstrated neuroprotective potential in both preclinical and clinical contexts. However, inter-individual variability, methodological heterogeneity, and the absence of longitudinal, multi-omics-integrated studies limit current understanding. The gut microbiome also holds promise as a non-invasive biomarker for early PD detection and prognosis, though standardization remains a challenge. Future research must clarify causal mechanisms, optimize therapeutic delivery, and integrate genetic, metabolic, and environmental data to advance precision medicine approaches. This review consolidates current knowledge on gut microbiota’s role in PD pathophysiology and therapeutic innovation, providing a roadmap for future research directions.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"581 ","pages":"Pages 1-15"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452225007651","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by dopaminergic neuronal loss, α-synuclein aggregation, and sustained neuroinflammation. Emerging evidence supports the gut-brain-microbiota axis as a pivotal player in the disease’s pathogenesis. Dysbiosis, disruptions in the gut microbial composition, has been consistently observed in individuals with PD, with notable reductions in beneficial, short-chain fatty acid-producing bacteria and elevations in pro-inflammatory microbial species. These alterations contribute to increased intestinal permeability, systemic inflammation, and heightened neuroinflammatory responses that may drive α-synuclein misfolding and dopaminergic degeneration. In addition, microbial metabolites, including lipopolysaccharides and amyloid proteins such as curli, may promote neurodegeneration via immune and molecular mimicry pathways. Recent advances highlight the bidirectional influence of the microbiota-gut-brain axis on PD symptoms, ranging from motor deficits to non-motor features like constipation, depression, and cognitive decline. Several microbiota-modulating interventions, including probiotics, prebiotics, dietary strategies, antibiotics, and fecal microbiota transplantation, have demonstrated neuroprotective potential in both preclinical and clinical contexts. However, inter-individual variability, methodological heterogeneity, and the absence of longitudinal, multi-omics-integrated studies limit current understanding. The gut microbiome also holds promise as a non-invasive biomarker for early PD detection and prognosis, though standardization remains a challenge. Future research must clarify causal mechanisms, optimize therapeutic delivery, and integrate genetic, metabolic, and environmental data to advance precision medicine approaches. This review consolidates current knowledge on gut microbiota’s role in PD pathophysiology and therapeutic innovation, providing a roadmap for future research directions.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.