Yonglong Xie, Andrew T. Pierce, Jeong Min Park, Daniel E. Parker, Jie Wang, Patrick Ledwith, Zhuozhen Cai, Kenji Watanabe, Takashi Taniguchi, Eslam Khalaf, Ashvin Vishwanath, Pablo Jarillo-Herrero, Amir Yacoby
{"title":"Strong interactions and isospin symmetry breaking in a supermoiré lattice","authors":"Yonglong Xie, Andrew T. Pierce, Jeong Min Park, Daniel E. Parker, Jie Wang, Patrick Ledwith, Zhuozhen Cai, Kenji Watanabe, Takashi Taniguchi, Eslam Khalaf, Ashvin Vishwanath, Pablo Jarillo-Herrero, Amir Yacoby","doi":"10.1126/science.adl2544","DOIUrl":null,"url":null,"abstract":"In multilayer moiré heterostructures, the interference of multiple twist angles ubiquitously leads to tunable ultra-long-wavelength patterns known as supermoiré lattices. However, their impact on the system’s many-body electronic phase diagram remains largely unexplored. We present local compressibility measurements revealing numerous incompressible states resulting from supermoiré-lattice-scale isospin symmetry breaking driven by strong interactions. By using the supermoiré lattice occupancy as a probe of isospin symmetry, we observe an unexpected doubling of the miniband filling near <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:mtext>ν</mml:mtext> <mml:mo>=</mml:mo> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> </jats:inline-formula> , possibly indicating a hidden phase transition or normal-state pairing proximal to the superconducting phase. Our work establishes supermoiré lattices as a tunable parameter for designing quantum phases and an effective tool for unraveling correlated phenomena in moiré materials.","PeriodicalId":21678,"journal":{"name":"Science","volume":"27 1","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adl2544","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In multilayer moiré heterostructures, the interference of multiple twist angles ubiquitously leads to tunable ultra-long-wavelength patterns known as supermoiré lattices. However, their impact on the system’s many-body electronic phase diagram remains largely unexplored. We present local compressibility measurements revealing numerous incompressible states resulting from supermoiré-lattice-scale isospin symmetry breaking driven by strong interactions. By using the supermoiré lattice occupancy as a probe of isospin symmetry, we observe an unexpected doubling of the miniband filling near ν=−2 , possibly indicating a hidden phase transition or normal-state pairing proximal to the superconducting phase. Our work establishes supermoiré lattices as a tunable parameter for designing quantum phases and an effective tool for unraveling correlated phenomena in moiré materials.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.