{"title":"Electric double-layer synthesis of a spongelike, lightweight reticular membrane","authors":"Yoshimitsu Itoh, Tengfei Fu, Pier-Luc Champagne, Yudai Yokoyama, Kunita Numabe, You-lee Hong, Yusuke Nishiyama, Hsiao-Fang Wang, Akemi Kumagai, Hiroshi Jinnai, Hirohmi Watanabe, Teiko Shibata-Seki, Asuteka Nagao, Tsutomu Suzuki, Yukie Saito, Keigo Wakabayashi, Takeharu Yoshii, Atsushi Izumi, Katsumi Hagita, Junichi Furukawa, Takuzo Aida","doi":"10.1126/science.adq0782","DOIUrl":null,"url":null,"abstract":"<div >Electrochemical polymer synthesis usually forms dense films bound to the electrode. We report a single-step synthesis of large-area, ultrathin (~70-nanometer) polymeric membranes with a luffa-like, reticular cross-linked network with low density (0.5 grams per cubic centimeter). This particular membrane forms within an electric double layer in water constructed by voltage application without supporting electrolytes—in which deprotonated resorcinol and an aldehyde react three-dimensionally with a self-termination mechanism—and is spontaneously released when the voltage bias is removed. Initially rigid with a Young’s modulus of 8.9 gigapascals, this membrane reversibly regains flexibility (0.5 gigapascals) upon wetting and can be used as a large-area membrane for separations. Its shape-persistent carbonization made it possible to yield ultrathin (~22-nanometer) nanoporous carbon membranes.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"389 6755","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adq0782","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical polymer synthesis usually forms dense films bound to the electrode. We report a single-step synthesis of large-area, ultrathin (~70-nanometer) polymeric membranes with a luffa-like, reticular cross-linked network with low density (0.5 grams per cubic centimeter). This particular membrane forms within an electric double layer in water constructed by voltage application without supporting electrolytes—in which deprotonated resorcinol and an aldehyde react three-dimensionally with a self-termination mechanism—and is spontaneously released when the voltage bias is removed. Initially rigid with a Young’s modulus of 8.9 gigapascals, this membrane reversibly regains flexibility (0.5 gigapascals) upon wetting and can be used as a large-area membrane for separations. Its shape-persistent carbonization made it possible to yield ultrathin (~22-nanometer) nanoporous carbon membranes.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.