Random unitaries in extremely low depth

IF 45.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Pub Date : 2025-07-03 DOI:10.1126/science.adv8590
Thomas Schuster, Jonas Haferkamp, Hsin-Yuan Huang
{"title":"Random unitaries in extremely low depth","authors":"Thomas Schuster,&nbsp;Jonas Haferkamp,&nbsp;Hsin-Yuan Huang","doi":"10.1126/science.adv8590","DOIUrl":null,"url":null,"abstract":"<div >Random unitaries are central to quantum technologies and the study of complex quantum many-body physics. However, existing protocols for generating random unitaries require long evolution times and deep circuits. In this work, we prove that local quantum circuits can form random unitaries in extremely low depth on any geometry. These shallow circuits have low complexity and create only short-range correlations, yet are indistinguishable from random unitaries with exponential complexity. This finding contrasts sharply with classical systems, in which a long evolution time is required to appear random. Our results have widespread applications across quantum science, from device benchmarking to quantum advantages. Moreover, they reveal that fundamental physical properties—including evolution time, causal structure, and phases of matter—are provably hard to learn.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"389 6755","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adv8590","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Random unitaries are central to quantum technologies and the study of complex quantum many-body physics. However, existing protocols for generating random unitaries require long evolution times and deep circuits. In this work, we prove that local quantum circuits can form random unitaries in extremely low depth on any geometry. These shallow circuits have low complexity and create only short-range correlations, yet are indistinguishable from random unitaries with exponential complexity. This finding contrasts sharply with classical systems, in which a long evolution time is required to appear random. Our results have widespread applications across quantum science, from device benchmarking to quantum advantages. Moreover, they reveal that fundamental physical properties—including evolution time, causal structure, and phases of matter—are provably hard to learn.
深度极低的随机单位
随机一元是量子技术和复杂量子多体物理研究的核心。然而,现有的生成随机酉元的协议需要较长的进化时间和较深的电路。在这项工作中,我们证明了局部量子电路可以在任何几何形状的极低深度上形成随机酉。这些浅层电路具有较低的复杂性,并且仅产生短距离相关性,但与具有指数复杂度的随机酉元难以区分。这一发现与经典系统形成鲜明对比,在经典系统中,需要很长的进化时间才能显得随机。我们的研究结果在量子科学领域有着广泛的应用,从设备基准测试到量子优势。此外,它们揭示了基本的物理性质——包括进化时间、因果结构和物质的阶段——被证明是很难学习的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信