Data-driven microstructural optimization of Ag-Bi-I perovskite-inspired materials

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Kshithij Mysore Nandishwara, Shuan Cheng, Pengjun Liu, Huimin Zhu, Xiaoyu Guo, Fabien C.-P. Massabuau, Robert L. Z. Hoye, Shijing Sun
{"title":"Data-driven microstructural optimization of Ag-Bi-I perovskite-inspired materials","authors":"Kshithij Mysore Nandishwara, Shuan Cheng, Pengjun Liu, Huimin Zhu, Xiaoyu Guo, Fabien C.-P. Massabuau, Robert L. Z. Hoye, Shijing Sun","doi":"10.1038/s41524-025-01701-7","DOIUrl":null,"url":null,"abstract":"<p>Microstructural design is crucial yet challenging for thin-film semiconductors, creating barriers for new materials to achieve practical applications in photovoltaics and optoelectronics. We present the Daisy Visual Intelligence Framework (Daisy), which combines multiple AI models to learn from historical microscopic images and propose new synthesis conditions towards desirable microstructures. Daisy consists of an image interpreter to extract grain and defect statistics, and a reinforcement-learning-driven synthesis planner to optimize thin-film morphology. Using Ag-Bi-I perovskite-inspired materials as a case study, Daisy achieved over 120× and 87× acceleration in image analysis and synthesis planning, respectively, compared to manual methods. Processing parameters for AgBiI<sub>4</sub> were optimized from over 1700 possible synthesis conditions within 3.5 min, yielding experimentally validated films with no visible pinholes and average grain sizes 14.5% larger than the historical mean. Our work advances computational frameworks for self-driving labs and shedding light on AI-accelerated microstructure development for emerging thin-film materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"647 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01701-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microstructural design is crucial yet challenging for thin-film semiconductors, creating barriers for new materials to achieve practical applications in photovoltaics and optoelectronics. We present the Daisy Visual Intelligence Framework (Daisy), which combines multiple AI models to learn from historical microscopic images and propose new synthesis conditions towards desirable microstructures. Daisy consists of an image interpreter to extract grain and defect statistics, and a reinforcement-learning-driven synthesis planner to optimize thin-film morphology. Using Ag-Bi-I perovskite-inspired materials as a case study, Daisy achieved over 120× and 87× acceleration in image analysis and synthesis planning, respectively, compared to manual methods. Processing parameters for AgBiI4 were optimized from over 1700 possible synthesis conditions within 3.5 min, yielding experimentally validated films with no visible pinholes and average grain sizes 14.5% larger than the historical mean. Our work advances computational frameworks for self-driving labs and shedding light on AI-accelerated microstructure development for emerging thin-film materials.

Abstract Image

Ag-Bi-I钙钛矿激发材料的数据驱动微结构优化
微结构设计对薄膜半导体至关重要,但也具有挑战性,这为新材料在光伏和光电子学中的实际应用创造了障碍。我们提出了Daisy视觉智能框架(Daisy),它结合了多个人工智能模型,从历史微观图像中学习,并提出了新的合成条件,以实现理想的微观结构。Daisy包括一个图像解释器,用于提取颗粒和缺陷统计信息,以及一个强化学习驱动的综合规划器,用于优化薄膜形态。Daisy以Ag-Bi-I钙钛矿启发材料为例,与人工方法相比,在图像分析和合成规划方面分别实现了超过120倍和87倍的加速。在3.5分钟内,对1700多种可能的合成条件进行了优化,得到了实验验证的AgBiI4薄膜,没有可见的针孔,平均晶粒尺寸比历史平均值大14.5%。我们的工作推进了自动驾驶实验室的计算框架,并为新兴薄膜材料的人工智能加速微观结构发展提供了线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信