Topological Skyrmion‐Based Spin‐Torque‐Diode Effect in Magnetic Tunnel Junctions

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuhui Liu, Riccardo Tomasello, Yuxuan Wu, Bin Fang, Aitian Chen, Dongxing Zheng, Baoshun Zhang, Emily Darwin, Hans J. Hug, Mario Carpentieri, Wanjun Jiang, Xixiang Zhang, Giovanni Finocchio, Zhongming Zeng
{"title":"Topological Skyrmion‐Based Spin‐Torque‐Diode Effect in Magnetic Tunnel Junctions","authors":"Shuhui Liu, Riccardo Tomasello, Yuxuan Wu, Bin Fang, Aitian Chen, Dongxing Zheng, Baoshun Zhang, Emily Darwin, Hans J. Hug, Mario Carpentieri, Wanjun Jiang, Xixiang Zhang, Giovanni Finocchio, Zhongming Zeng","doi":"10.1002/aelm.202500130","DOIUrl":null,"url":null,"abstract":"The Internet of Things market's rapid growth is increasing the need for energy‐efficient nanoscale hardware for edge computing and microwave applications. Magnetic tunnel junctions (MTJs), as key components of spintronic microwave technology, offer a promising pathway for compact and high‐performance microwave detectors. Simultaneously, the emerging field of skyrmionics combines concepts from topology and spintronics, opening new avenues for device innovation. This study demonstrates the electrical excitation and detection of skyrmion dynamics using a topological spin‐torque diode (STD) with a nanoscale MTJ on a skyrmionic material at room temperature and for a wide region of applied fields, including the zero‐field case. Quantitative Magnetic Force Microscopy measurements confirm the presence of a single skyrmion in the MTJ‐free layer. Electrical measurements reveal the electrical excitation via spin‐transfer torque (STT) of a skyrmion resonant mode with frequencies near 4 GHz and a selectivity one order of magnitude smaller than the uniform modes excited in the same device. Micromagnetic simulations identify these dynamics to the breathing mode and highlight the impact of thickness‐dependent magnetic parameters (magnetic anisotropy field and Dzyaloshinkii–Moriya interaction) in both stabilizing and exciting the magnetic skyrmions. This work marks a milestone in the development of topological spin microwave devices.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"51 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500130","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Things market's rapid growth is increasing the need for energy‐efficient nanoscale hardware for edge computing and microwave applications. Magnetic tunnel junctions (MTJs), as key components of spintronic microwave technology, offer a promising pathway for compact and high‐performance microwave detectors. Simultaneously, the emerging field of skyrmionics combines concepts from topology and spintronics, opening new avenues for device innovation. This study demonstrates the electrical excitation and detection of skyrmion dynamics using a topological spin‐torque diode (STD) with a nanoscale MTJ on a skyrmionic material at room temperature and for a wide region of applied fields, including the zero‐field case. Quantitative Magnetic Force Microscopy measurements confirm the presence of a single skyrmion in the MTJ‐free layer. Electrical measurements reveal the electrical excitation via spin‐transfer torque (STT) of a skyrmion resonant mode with frequencies near 4 GHz and a selectivity one order of magnitude smaller than the uniform modes excited in the same device. Micromagnetic simulations identify these dynamics to the breathing mode and highlight the impact of thickness‐dependent magnetic parameters (magnetic anisotropy field and Dzyaloshinkii–Moriya interaction) in both stabilizing and exciting the magnetic skyrmions. This work marks a milestone in the development of topological spin microwave devices.
磁隧道结中基于拓扑Skyrmion的自旋转矩二极管效应
物联网市场的快速增长正在增加对用于边缘计算和微波应用的节能纳米级硬件的需求。磁隧道结(MTJs)作为自旋电子微波技术的关键部件,为小型化、高性能的微波探测器提供了一条有前景的途径。同时,新兴的天空仿生领域结合了拓扑学和自旋电子学的概念,为设备创新开辟了新的途径。本研究展示了在室温下,在广泛的应用领域,包括零场情况下,使用具有纳米级MTJ的拓扑自旋力矩二极管(STD)在skyrmi电子学材料上的电激励和skyrmi电子学动力学检测。定量磁力显微镜测量证实了在无MTJ层中存在单个skyrion。电学测量表明,通过自旋传递扭矩(STT)的电激励频率接近4 GHz的斯基米子谐振模式,其选择性比在同一器件中激发的均匀模式小一个数量级。微磁模拟识别了呼吸模式的这些动态,并强调了厚度相关的磁参数(磁各向异性场和Dzyaloshinkii-Moriya相互作用)在稳定和激发磁天空中的影响。这项工作标志着拓扑自旋微波器件发展的一个里程碑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信