Sparse group LASSO and nonlinear machine learning for frequency-feature optimization in noninvasive blood glucose monitoring via bioimpedance spectroscopy.

IF 1.7 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Zhongwei Lu, Tian Zhou, Cong Hu, Chuanpei Xu, Shike Long, Shaorong Zhang, Benxin Zhang
{"title":"Sparse group LASSO and nonlinear machine learning for frequency-feature optimization in noninvasive blood glucose monitoring via bioimpedance spectroscopy.","authors":"Zhongwei Lu, Tian Zhou, Cong Hu, Chuanpei Xu, Shike Long, Shaorong Zhang, Benxin Zhang","doi":"10.1063/5.0251837","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic patients need to test their blood glucose levels (BGL) frequently; however, traditional methods of blood collection and testing cause great pain to patients. In order to improve the quality of life of patients, this paper develops a noninvasive, portable, and continuous monitoring blood glucose detection system, which uses the latest bioimpedance integrated circuit to obtain the bioimpedance spectrum (BIS) of the inner forearm of the human body. The obtained BIS covers most of the frequencies up to 1 MHz. A BGL estimation model is developed using sparse group least absolute shrinkage and selection operator combined with a Gaussian kernel function support vector regression to select the optimal frequencies and features for BIS. The correlations between different frequencies and features and BGL are investigated. We test our system on a collected dataset of clinical subjects, and the results show that the average mean absolute relative difference for all subjects is 9.90%, the root mean square error is 14.81 mg/dl, and the mean absolute error is 11.75 mg/dl. 100% of the estimates fall in zones A and B of the Clarke error grid. Preliminary results show that the use of BIS integrated circuits in combination with machine learning techniques promises to enable portable, noninvasive, continuous monitoring of BGLs.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 7","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0251837","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic patients need to test their blood glucose levels (BGL) frequently; however, traditional methods of blood collection and testing cause great pain to patients. In order to improve the quality of life of patients, this paper develops a noninvasive, portable, and continuous monitoring blood glucose detection system, which uses the latest bioimpedance integrated circuit to obtain the bioimpedance spectrum (BIS) of the inner forearm of the human body. The obtained BIS covers most of the frequencies up to 1 MHz. A BGL estimation model is developed using sparse group least absolute shrinkage and selection operator combined with a Gaussian kernel function support vector regression to select the optimal frequencies and features for BIS. The correlations between different frequencies and features and BGL are investigated. We test our system on a collected dataset of clinical subjects, and the results show that the average mean absolute relative difference for all subjects is 9.90%, the root mean square error is 14.81 mg/dl, and the mean absolute error is 11.75 mg/dl. 100% of the estimates fall in zones A and B of the Clarke error grid. Preliminary results show that the use of BIS integrated circuits in combination with machine learning techniques promises to enable portable, noninvasive, continuous monitoring of BGLs.

稀疏组LASSO和非线性机器学习在生物阻抗谱无创血糖监测中的频率特征优化
糖尿病患者需要经常检测血糖水平(BGL);然而,传统的采血和检测方法给患者带来了巨大的痛苦。为了提高患者的生活质量,本文开发了一种无创、便携式、连续监测血糖检测系统,该系统采用最新的生物阻抗集成电路获取人体前臂内侧的生物阻抗谱(BIS)。得到的BIS覆盖了1mhz以内的大部分频率。利用稀疏群最小绝对收缩和选择算子,结合高斯核函数支持向量回归,建立了BGL估计模型,以选择BIS的最优频率和特征。研究了不同频率和特征与BGL之间的相关性。我们在收集的临床受试者数据集上对系统进行了测试,结果表明,所有受试者的平均绝对相对差为9.90%,均方根误差为14.81 mg/dl,平均绝对误差为11.75 mg/dl。100%的估计值落在克拉克误差网格的A区和B区。初步结果表明,将BIS集成电路与机器学习技术相结合,有望实现对bgl的便携式、无创、连续监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信