Senyue Tan, Jiamin Wei, Ailan Diao, Douglas R. Tocher, Zeling Lin, Bing Chen, Ruixin Li, Shuqi Wang, Cuiying Chen
{"title":"Adipocyte Hyperplasia Facilitated Adipose Tissue Expansion to Alleviate Hepatopancreas Injury in Nile Tilapia (Oreochromis niloticus) Fed High-Fat Diet","authors":"Senyue Tan, Jiamin Wei, Ailan Diao, Douglas R. Tocher, Zeling Lin, Bing Chen, Ruixin Li, Shuqi Wang, Cuiying Chen","doi":"10.1155/anu/1260555","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Previous studies showed that interplay between liver and adipose tissue was important for animals to adapt to high-fat diets (HFDs). While the mechanisms of adaptation to HFD are not fully understood in fish, we hypothesize that interaction between these key tissues will be crucial. The present study evaluated the physiological and biochemical characteristics and gene expression profiles of hepatopancreas and adipose tissue of Nile tilapia (<i>Oreochromus niloticus</i>; initial weight, 20.01 ± 0.01 g) fed diets containing either 6% lipid (normal-fat diet [NFD]) or 12% lipid (HFD) for up to 10 weeks. While growth was not affected, serum and hepatopancreatic lipid contents increased significantly in tilapia fed HFD compared to fish fed NFD at 6 weeks (<i>p</i> < 0.05). In addition, feeding HFD for 6 weeks induced hepatopancreatic injury as shown by increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in serum and higher expression of genes related to inflammation (<i>tnfβ</i> and <i>il-1β</i>) and malondialdehyde (MDA) content in hepatopancreas (<i>p</i> < 0.05). However, after feeding HFD for 10 weeks, serum and hepatopancreatic lipid contents and injury indices decreased, whereas mesenteric fat index (MFI) and expression of genes related to glucose (GLU) metabolism (<i>pfk</i>, <i>g6pd</i>, and <i>glut2</i>) in hepatopancreas increased significantly compared to the NFD group (<i>p</i> < 0.05). Significant expansion of mesenteric adipose tissue was observed in tilapia fed HFD, due mainly to adipocyte hypertrophy at 6 and 8 weeks and hyperplasia at 10 weeks. With the expansion of mesenteric adipose tissue, the expression of genes related to lipid metabolism and inflammation increased at 8 weeks, but decreased at 10 weeks. The data indicated that excess dietary lipid accumulated initially in hepatopancreas of tilapia consuming HFD, but prolonged intake promoted mesenteric adipose tissue development, potentially mitigating hepatopancreas damage caused by excess lipid deposition. Additionally, enhanced hepatopancreatic glycolysis may contribute to the adaptation of tilapia to HFD intake.</p>\n </div>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":"2025 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/anu/1260555","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/anu/1260555","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies showed that interplay between liver and adipose tissue was important for animals to adapt to high-fat diets (HFDs). While the mechanisms of adaptation to HFD are not fully understood in fish, we hypothesize that interaction between these key tissues will be crucial. The present study evaluated the physiological and biochemical characteristics and gene expression profiles of hepatopancreas and adipose tissue of Nile tilapia (Oreochromus niloticus; initial weight, 20.01 ± 0.01 g) fed diets containing either 6% lipid (normal-fat diet [NFD]) or 12% lipid (HFD) for up to 10 weeks. While growth was not affected, serum and hepatopancreatic lipid contents increased significantly in tilapia fed HFD compared to fish fed NFD at 6 weeks (p < 0.05). In addition, feeding HFD for 6 weeks induced hepatopancreatic injury as shown by increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in serum and higher expression of genes related to inflammation (tnfβ and il-1β) and malondialdehyde (MDA) content in hepatopancreas (p < 0.05). However, after feeding HFD for 10 weeks, serum and hepatopancreatic lipid contents and injury indices decreased, whereas mesenteric fat index (MFI) and expression of genes related to glucose (GLU) metabolism (pfk, g6pd, and glut2) in hepatopancreas increased significantly compared to the NFD group (p < 0.05). Significant expansion of mesenteric adipose tissue was observed in tilapia fed HFD, due mainly to adipocyte hypertrophy at 6 and 8 weeks and hyperplasia at 10 weeks. With the expansion of mesenteric adipose tissue, the expression of genes related to lipid metabolism and inflammation increased at 8 weeks, but decreased at 10 weeks. The data indicated that excess dietary lipid accumulated initially in hepatopancreas of tilapia consuming HFD, but prolonged intake promoted mesenteric adipose tissue development, potentially mitigating hepatopancreas damage caused by excess lipid deposition. Additionally, enhanced hepatopancreatic glycolysis may contribute to the adaptation of tilapia to HFD intake.
期刊介绍:
Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers.
Aquaculture Nutrition publishes papers which strive to:
increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research.
improve understanding of the relationships between nutrition and the environmental impact of aquaculture.
increase understanding of the relationships between nutrition and processing, product quality, and the consumer.
help aquaculturalists improve their management and understanding of the complex discipline of nutrition.
help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.