Eliézer Lucas Pires Ramos , Ivo Vieira de Sousa Neto , Ana Paula Pinto , Dennys Esper Cintra , Eduardo Rochete Ropelle , José Rodrigo Pauli , Ellen Cristini de Freitas , Tiago Wilson Patriarca Mineo , Adelino Sanchez Ramos da Silva
{"title":"Mechanisms underlying the interplay between autophagy and the inflammasome in age-related diseases: Implications for exercise immunology","authors":"Eliézer Lucas Pires Ramos , Ivo Vieira de Sousa Neto , Ana Paula Pinto , Dennys Esper Cintra , Eduardo Rochete Ropelle , José Rodrigo Pauli , Ellen Cristini de Freitas , Tiago Wilson Patriarca Mineo , Adelino Sanchez Ramos da Silva","doi":"10.1016/j.arr.2025.102821","DOIUrl":null,"url":null,"abstract":"<div><div>Aging is a multifactorial process characterized by cellular dysfunction and increased susceptibility to age-related diseases. The interplay between autophagy and inflammasome has emerged as a critical factor influencing the aging process. Autophagy, which is responsible for degrading damaged cellular components, declines with age, leading to the accumulation of dysfunctional organelles and misfolded proteins. At the same time, the inflammasome, a key mediator of inflammatory responses, becomes hyperactivated in aging tissues, contributing to chronic low-grade inflammation, commonly referred to as \"inflammaging.\" This dysregulated interaction between autophagy and inflammasome activation plays a significant role in the development and progression of several age-related diseases. In cancer, reduced autophagic activity promotes tumorigenesis, while increased inflammasome activation establishes an inflammatory microenvironment that supports cancer progression. In arthritis, including both osteoarthritis and rheumatoid arthritis, impaired autophagy and inflammasome-driven inflammation contribute to joint degeneration. Neurodegenerative diseases such as Alzheimer's and Parkinson's are marked by defective autophagic clearance of protein aggregates and heightened inflammasome activation, leading to neuronal loss. Cardiovascular diseases, including atherosclerosis and myocardial dysfunction, also involve compromised autophagy and persistent inflammation, which accelerate vascular aging and cardiac damage. Exercise has emerged as a promising intervention for modulating the autophagy NLRP3 inflammasome axis. Moderate-intensity physical activity enhances autophagic flux by upregulating proteins such as BECLIN1, LC3, and ATG12, promoting mitochondrial quality control and reducing protein aggregates. This effect leads to decreased ROS production and suppression of NLRP3 inflammasome activation, lowering IL-1β and IL-18 levels, thereby helping to restore cellular homeostasis and reduce age-associated inflammation. Irisin also showed the importance of inhibiting inflammasome activation by promoting mitophagy after exercise. In both animal and human experiments, exercise has been shown to reduce systemic inflammation, improve cognitive function, attenuate joint degradation, and decrease cardiovascular risk, largely through these molecular pathways. This review explores recent findings that underscore the beneficial role of exercise in mitigating the effects of aging and preventing age-related diseases by regulating autophagy and inflammasome activities.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"110 ","pages":"Article 102821"},"PeriodicalIF":12.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163725001679","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aging is a multifactorial process characterized by cellular dysfunction and increased susceptibility to age-related diseases. The interplay between autophagy and inflammasome has emerged as a critical factor influencing the aging process. Autophagy, which is responsible for degrading damaged cellular components, declines with age, leading to the accumulation of dysfunctional organelles and misfolded proteins. At the same time, the inflammasome, a key mediator of inflammatory responses, becomes hyperactivated in aging tissues, contributing to chronic low-grade inflammation, commonly referred to as "inflammaging." This dysregulated interaction between autophagy and inflammasome activation plays a significant role in the development and progression of several age-related diseases. In cancer, reduced autophagic activity promotes tumorigenesis, while increased inflammasome activation establishes an inflammatory microenvironment that supports cancer progression. In arthritis, including both osteoarthritis and rheumatoid arthritis, impaired autophagy and inflammasome-driven inflammation contribute to joint degeneration. Neurodegenerative diseases such as Alzheimer's and Parkinson's are marked by defective autophagic clearance of protein aggregates and heightened inflammasome activation, leading to neuronal loss. Cardiovascular diseases, including atherosclerosis and myocardial dysfunction, also involve compromised autophagy and persistent inflammation, which accelerate vascular aging and cardiac damage. Exercise has emerged as a promising intervention for modulating the autophagy NLRP3 inflammasome axis. Moderate-intensity physical activity enhances autophagic flux by upregulating proteins such as BECLIN1, LC3, and ATG12, promoting mitochondrial quality control and reducing protein aggregates. This effect leads to decreased ROS production and suppression of NLRP3 inflammasome activation, lowering IL-1β and IL-18 levels, thereby helping to restore cellular homeostasis and reduce age-associated inflammation. Irisin also showed the importance of inhibiting inflammasome activation by promoting mitophagy after exercise. In both animal and human experiments, exercise has been shown to reduce systemic inflammation, improve cognitive function, attenuate joint degradation, and decrease cardiovascular risk, largely through these molecular pathways. This review explores recent findings that underscore the beneficial role of exercise in mitigating the effects of aging and preventing age-related diseases by regulating autophagy and inflammasome activities.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.