Three-dimensional spheroid models for cardiovascular biology and pathology

Alanna Krug , Gabrielle Inserra , Rhonda Drewes , Amanda Krajnik , Joseph A. Brazzo III , Thomas Mousso , Su Chin Heo , Yongho Bae
{"title":"Three-dimensional spheroid models for cardiovascular biology and pathology","authors":"Alanna Krug ,&nbsp;Gabrielle Inserra ,&nbsp;Rhonda Drewes ,&nbsp;Amanda Krajnik ,&nbsp;Joseph A. Brazzo III ,&nbsp;Thomas Mousso ,&nbsp;Su Chin Heo ,&nbsp;Yongho Bae","doi":"10.1016/j.mbm.2025.100144","DOIUrl":null,"url":null,"abstract":"<div><div>Scaffold-free three-dimensional (3D) cellular spheroid cultures better replicate the <em>in vivo</em> cellular microenvironments of complex tissues than traditional two-dimensional (2D) cell cultures, as they promote more intricate cell-cell and cell-extracellular matrix (ECM) interactions. In the context of cardiovascular research, 3D spheroids have emerged as valuable models for studying angiogenesis, modeling the cardiac microenvironment, and advancing drug development and cardiac tissue repair. Given that cardiovascular disease remains the leading cause of morbidity worldwide, exploring 3D spheroids as <em>in vitro</em> models in cardiovascular research holds potential for advancing the field. Despite their promise, the experimental potential of 3D spheroids in cardiovascular disease and biology has yet to be realized. Therefore, this review discusses the advantages and limitations of 3D spheroid models for studying angiogenesis and cardiovascular pathobiology, their applications in cardiac drug development and tissue repair, and how these models can advance cardiovascular research.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 3","pages":"Article 100144"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907025000324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scaffold-free three-dimensional (3D) cellular spheroid cultures better replicate the in vivo cellular microenvironments of complex tissues than traditional two-dimensional (2D) cell cultures, as they promote more intricate cell-cell and cell-extracellular matrix (ECM) interactions. In the context of cardiovascular research, 3D spheroids have emerged as valuable models for studying angiogenesis, modeling the cardiac microenvironment, and advancing drug development and cardiac tissue repair. Given that cardiovascular disease remains the leading cause of morbidity worldwide, exploring 3D spheroids as in vitro models in cardiovascular research holds potential for advancing the field. Despite their promise, the experimental potential of 3D spheroids in cardiovascular disease and biology has yet to be realized. Therefore, this review discusses the advantages and limitations of 3D spheroid models for studying angiogenesis and cardiovascular pathobiology, their applications in cardiac drug development and tissue repair, and how these models can advance cardiovascular research.

Abstract Image

用于心血管生物学和病理学的三维球体模型
与传统的二维(2D)细胞培养相比,无支架的三维(3D)细胞球体培养能更好地复制复杂组织的体内细胞微环境,因为它们促进了更复杂的细胞间和细胞外基质(ECM)相互作用。在心血管研究的背景下,三维球体已经成为研究血管生成、心脏微环境建模、推进药物开发和心脏组织修复的有价值的模型。鉴于心血管疾病仍然是世界范围内发病率的主要原因,在心血管研究中探索3D球体作为体外模型具有推进该领域的潜力。尽管前景看好,但3D球体在心血管疾病和生物学方面的实验潜力尚未实现。因此,本文综述了三维球体模型在血管生成和心血管病理生物学研究中的优势和局限性,以及它们在心脏药物开发和组织修复中的应用,以及这些模型如何促进心血管研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信