Addressing data scarcity in nanomaterial segmentation networks with differentiable rendering and generative modeling

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Dennis Possart, Leonid Mill, Florian Vollnhals, Tor Hildebrand, Peter Suter, Mathis Hoffmann, Jonas Utz, Daniel Augsburger, Mareike Thies, Mingxuan Gu, Fabian Wagner, George Sarau, Silke Christiansen, Katharina Breininger
{"title":"Addressing data scarcity in nanomaterial segmentation networks with differentiable rendering and generative modeling","authors":"Dennis Possart, Leonid Mill, Florian Vollnhals, Tor Hildebrand, Peter Suter, Mathis Hoffmann, Jonas Utz, Daniel Augsburger, Mareike Thies, Mingxuan Gu, Fabian Wagner, George Sarau, Silke Christiansen, Katharina Breininger","doi":"10.1038/s41524-025-01702-6","DOIUrl":null,"url":null,"abstract":"<p>Nanomaterials’ properties, influenced by size, shape, and surface characteristics, are crucial for their technological, biological, and environmental applications. Accurate quantification of these materials is essential for advancing research. Deep learning segmentation networks offer precise, automated analysis, but their effectiveness depends on representative annotated datasets, which are difficult to obtain due to the high cost and manual effort required for imaging and annotation. To address this, we present DiffRenderGAN, a generative model that produces annotated synthetic data by integrating a differentiable renderer into a Generative Adversarial Network (GAN) framework. DiffRenderGAN optimizes rendering parameters to produce realistic, annotated images from non-annotated real microscopy images, reducing manual effort and improving segmentation performance compared to existing methods. Tested on ion and electron microscopy datasets, including titanium dioxide (TiO<sub>2</sub>), silicon dioxide (SiO<sub>2</sub>), and silver nanowires (AgNW), DiffRenderGAN bridges the gap between synthetic and real data, advancing the quantification and understanding of complex nanomaterial systems.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"47 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01702-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanomaterials’ properties, influenced by size, shape, and surface characteristics, are crucial for their technological, biological, and environmental applications. Accurate quantification of these materials is essential for advancing research. Deep learning segmentation networks offer precise, automated analysis, but their effectiveness depends on representative annotated datasets, which are difficult to obtain due to the high cost and manual effort required for imaging and annotation. To address this, we present DiffRenderGAN, a generative model that produces annotated synthetic data by integrating a differentiable renderer into a Generative Adversarial Network (GAN) framework. DiffRenderGAN optimizes rendering parameters to produce realistic, annotated images from non-annotated real microscopy images, reducing manual effort and improving segmentation performance compared to existing methods. Tested on ion and electron microscopy datasets, including titanium dioxide (TiO2), silicon dioxide (SiO2), and silver nanowires (AgNW), DiffRenderGAN bridges the gap between synthetic and real data, advancing the quantification and understanding of complex nanomaterial systems.

Abstract Image

用可微分渲染和生成建模解决纳米材料分割网络中的数据稀缺性
纳米材料的性质受尺寸、形状和表面特性的影响,对其技术、生物和环境应用至关重要。这些材料的准确定量对推进研究至关重要。深度学习分割网络提供精确的自动化分析,但其有效性取决于代表性的注释数据集,由于成像和注释需要高成本和人工努力,难以获得这些数据集。为了解决这个问题,我们提出了DiffRenderGAN,这是一个生成模型,通过将可微分渲染器集成到生成对抗网络(GAN)框架中来生成带注释的合成数据。DiffRenderGAN优化了渲染参数,从无注释的真实显微镜图像中生成逼真的、带注释的图像,与现有方法相比,减少了人工工作量,提高了分割性能。在包括二氧化钛(TiO2)、二氧化硅(SiO2)和银纳米线(AgNW)在内的离子和电子显微镜数据集上进行了测试,DiffRenderGAN弥合了合成数据和真实数据之间的差距,促进了对复杂纳米材料系统的量化和理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信