{"title":"Learning atomic forces from uncertainty-calibrated adversarial attacks","authors":"Henrique Musseli Cezar, Tilmann Bodenstein, Henrik Andersen Sveinsson, Morten Ledum, Simen Reine, Sigbjørn Løland Bore","doi":"10.1038/s41524-025-01703-5","DOIUrl":null,"url":null,"abstract":"<p>Adversarial approaches, which intentionally challenge machine learning models by generating difficult examples, are increasingly being adopted to improve machine learning interatomic potentials (MLIPs). While already providing great practical value, little is known about the actual prediction errors of MLIPs on adversarial structures and whether these errors can be controlled. We propose the Calibrated Adversarial Geometry Optimization (CAGO) algorithm to discover adversarial structures with user-assigned errors. Through uncertainty calibration, the estimated uncertainty of MLIPs is unified with real errors. By performing geometry optimization for calibrated uncertainty, we reach adversarial structures with the user-assigned target MLIP prediction error. Integrating with active learning pipelines, we benchmark CAGO, demonstrating stable MLIPs that systematically converge structural, dynamical, and thermodynamical properties for liquid water and water adsorption in a metal-organic framework within only hundreds of training structures, where previously many thousands were typically required.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"646 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01703-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adversarial approaches, which intentionally challenge machine learning models by generating difficult examples, are increasingly being adopted to improve machine learning interatomic potentials (MLIPs). While already providing great practical value, little is known about the actual prediction errors of MLIPs on adversarial structures and whether these errors can be controlled. We propose the Calibrated Adversarial Geometry Optimization (CAGO) algorithm to discover adversarial structures with user-assigned errors. Through uncertainty calibration, the estimated uncertainty of MLIPs is unified with real errors. By performing geometry optimization for calibrated uncertainty, we reach adversarial structures with the user-assigned target MLIP prediction error. Integrating with active learning pipelines, we benchmark CAGO, demonstrating stable MLIPs that systematically converge structural, dynamical, and thermodynamical properties for liquid water and water adsorption in a metal-organic framework within only hundreds of training structures, where previously many thousands were typically required.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.