Optimization of Coulomb energies in gigantic configurational spaces of multi-element ionic crystals

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Konstantin Köster, Tobias Binninger, Payam Kaghazchi
{"title":"Optimization of Coulomb energies in gigantic configurational spaces of multi-element ionic crystals","authors":"Konstantin Köster, Tobias Binninger, Payam Kaghazchi","doi":"10.1038/s41524-025-01690-7","DOIUrl":null,"url":null,"abstract":"<p>Most of the novel energy materials contain multiple elements occupying a single site in their lattice. The exceedingly large configurational space of these materials imposes challenges in determining low(est) energy structures. Coulomb energies of possible configurations generally show a satisfactory correlation to computed energies at higher levels of theory and thus allow to screen for minimum-energy structures. Employing an expansion into a binary optimization problem, we obtain an efficient Coulomb energy optimizer using Monte Carlo and Genetic Algorithms. The presented optimization package, GOAC (Global Optimization of Atomistic Configurations by Coulomb), can achieve a speed up of several orders of magnitude compared to existing software. In this work, heuristic optimization on various material classes is performed. Thus, GOAC provides an efficient method for constructing low-energy atomistic models for ionic multi-element materials with gigantic configurational spaces.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"15 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01690-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the novel energy materials contain multiple elements occupying a single site in their lattice. The exceedingly large configurational space of these materials imposes challenges in determining low(est) energy structures. Coulomb energies of possible configurations generally show a satisfactory correlation to computed energies at higher levels of theory and thus allow to screen for minimum-energy structures. Employing an expansion into a binary optimization problem, we obtain an efficient Coulomb energy optimizer using Monte Carlo and Genetic Algorithms. The presented optimization package, GOAC (Global Optimization of Atomistic Configurations by Coulomb), can achieve a speed up of several orders of magnitude compared to existing software. In this work, heuristic optimization on various material classes is performed. Thus, GOAC provides an efficient method for constructing low-energy atomistic models for ionic multi-element materials with gigantic configurational spaces.

Abstract Image

多元素离子晶体巨大构型空间中库仑能的优化
大多数新型能源材料包含多个元素,占据其晶格中的单个位置。这些材料的巨大构型空间给确定低(最低)能量结构带来了挑战。可能构型的库仑能量通常显示出与较高理论水平计算能量的令人满意的相关性,从而允许筛选最小能量结构。将一个二元优化问题展开,利用蒙特卡罗算法和遗传算法得到了一个高效的库仑能量优化器。所提出的优化包GOAC (Global optimization of Atomistic Configurations by Coulomb)与现有软件相比,可以实现几个数量级的速度提升。在这项工作中,对各种材料类进行了启发式优化。因此,GOAC为构建具有巨大构型空间的离子多元素材料的低能原子模型提供了有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信