Pretrained E(3)-equivariant message-passing neural networks with multi-level representations for organic molecule spectra prediction

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yuzhi Xu, Daqian Bian, Cheng-Wei Ju, Fanyu Zhao, Pujun Xie, Yuanqing Wang, Wei Hu, Zhenrong Sun, John Z. H. Zhang, Tong Zhu
{"title":"Pretrained E(3)-equivariant message-passing neural networks with multi-level representations for organic molecule spectra prediction","authors":"Yuzhi Xu, Daqian Bian, Cheng-Wei Ju, Fanyu Zhao, Pujun Xie, Yuanqing Wang, Wei Hu, Zhenrong Sun, John Z. H. Zhang, Tong Zhu","doi":"10.1038/s41524-025-01698-z","DOIUrl":null,"url":null,"abstract":"<p>Fast and accurate spectral prediction plays a crucial role in molecular design within fields such as pharmaceutical and materials science. Nevertheless, predicting molecular spectra typically requires quantum chemistry calculations, posing significant challenges for fast predictions and high-throughput screening. In this paper, we propose an equivariant, fast, and robust model, named EnviroDetaNet, which integrates molecular environment information. EnviroDetaNet employs an E(3)-equivariant message-passing neural network combining intrinsic atomic properties, spatial features, and environmental information, allowing it to comprehensively capture both local and global molecular information. Compared to state-of-the-art machine learning models, EnviroDetaNet excels in various predictive tasks and maintains high accuracy even with a 50% reduction in training data, demonstrating strong generalization capabilities. Ablation studies confirm that molecular environment information is crucial for improving model stability and accuracy. EnviroDetaNet also shows outstanding performance in spectral predictions for complex molecular systems, making it a powerful tool for accelerating molecular discovery.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"27 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01698-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fast and accurate spectral prediction plays a crucial role in molecular design within fields such as pharmaceutical and materials science. Nevertheless, predicting molecular spectra typically requires quantum chemistry calculations, posing significant challenges for fast predictions and high-throughput screening. In this paper, we propose an equivariant, fast, and robust model, named EnviroDetaNet, which integrates molecular environment information. EnviroDetaNet employs an E(3)-equivariant message-passing neural network combining intrinsic atomic properties, spatial features, and environmental information, allowing it to comprehensively capture both local and global molecular information. Compared to state-of-the-art machine learning models, EnviroDetaNet excels in various predictive tasks and maintains high accuracy even with a 50% reduction in training data, demonstrating strong generalization capabilities. Ablation studies confirm that molecular environment information is crucial for improving model stability and accuracy. EnviroDetaNet also shows outstanding performance in spectral predictions for complex molecular systems, making it a powerful tool for accelerating molecular discovery.

Abstract Image

用于有机分子光谱预测的预训练E(3)等变消息传递神经网络
快速准确的光谱预测在制药和材料科学等领域的分子设计中起着至关重要的作用。然而,预测分子光谱通常需要量子化学计算,这对快速预测和高通量筛选提出了重大挑战。在本文中,我们提出了一个等变的、快速的、鲁棒的模型,命名为EnviroDetaNet,它集成了分子环境信息。EnviroDetaNet采用了E(3)等变消息传递神经网络,结合了固有的原子特性、空间特征和环境信息,使其能够全面捕获局部和全局分子信息。与最先进的机器学习模型相比,EnviroDetaNet在各种预测任务中表现出色,即使训练数据减少50%,也能保持较高的准确性,显示出强大的泛化能力。消融研究证实,分子环境信息对于提高模型的稳定性和准确性至关重要。EnviroDetaNet在复杂分子系统的光谱预测方面也表现出出色的性能,使其成为加速分子发现的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信