Yuzhi Xu, Daqian Bian, Cheng-Wei Ju, Fanyu Zhao, Pujun Xie, Yuanqing Wang, Wei Hu, Zhenrong Sun, John Z. H. Zhang, Tong Zhu
{"title":"Pretrained E(3)-equivariant message-passing neural networks with multi-level representations for organic molecule spectra prediction","authors":"Yuzhi Xu, Daqian Bian, Cheng-Wei Ju, Fanyu Zhao, Pujun Xie, Yuanqing Wang, Wei Hu, Zhenrong Sun, John Z. H. Zhang, Tong Zhu","doi":"10.1038/s41524-025-01698-z","DOIUrl":null,"url":null,"abstract":"<p>Fast and accurate spectral prediction plays a crucial role in molecular design within fields such as pharmaceutical and materials science. Nevertheless, predicting molecular spectra typically requires quantum chemistry calculations, posing significant challenges for fast predictions and high-throughput screening. In this paper, we propose an equivariant, fast, and robust model, named EnviroDetaNet, which integrates molecular environment information. EnviroDetaNet employs an E(3)-equivariant message-passing neural network combining intrinsic atomic properties, spatial features, and environmental information, allowing it to comprehensively capture both local and global molecular information. Compared to state-of-the-art machine learning models, EnviroDetaNet excels in various predictive tasks and maintains high accuracy even with a 50% reduction in training data, demonstrating strong generalization capabilities. Ablation studies confirm that molecular environment information is crucial for improving model stability and accuracy. EnviroDetaNet also shows outstanding performance in spectral predictions for complex molecular systems, making it a powerful tool for accelerating molecular discovery.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"27 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01698-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fast and accurate spectral prediction plays a crucial role in molecular design within fields such as pharmaceutical and materials science. Nevertheless, predicting molecular spectra typically requires quantum chemistry calculations, posing significant challenges for fast predictions and high-throughput screening. In this paper, we propose an equivariant, fast, and robust model, named EnviroDetaNet, which integrates molecular environment information. EnviroDetaNet employs an E(3)-equivariant message-passing neural network combining intrinsic atomic properties, spatial features, and environmental information, allowing it to comprehensively capture both local and global molecular information. Compared to state-of-the-art machine learning models, EnviroDetaNet excels in various predictive tasks and maintains high accuracy even with a 50% reduction in training data, demonstrating strong generalization capabilities. Ablation studies confirm that molecular environment information is crucial for improving model stability and accuracy. EnviroDetaNet also shows outstanding performance in spectral predictions for complex molecular systems, making it a powerful tool for accelerating molecular discovery.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.