Discovery of liquid crystalline polymers with high thermal conductivity using machine learning

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hayato Maeda, Stephen Wu, Rika Marui, Erina Yoshida, Kan Hatakeyama-Sato, Yuta Nabae, Shiori Nakagawa, Meguya Ryu, Ryohei Ishige, Yoh Noguchi, Yoshihiro Hayashi, Masashi Ishii, Isao Kuwajima, Felix Jiang, Xuan Thang Vu, Sven Ingebrandt, Masatoshi Tokita, Junko Morikawa, Ryo Yoshida, Teruaki Hayakawa
{"title":"Discovery of liquid crystalline polymers with high thermal conductivity using machine learning","authors":"Hayato Maeda, Stephen Wu, Rika Marui, Erina Yoshida, Kan Hatakeyama-Sato, Yuta Nabae, Shiori Nakagawa, Meguya Ryu, Ryohei Ishige, Yoh Noguchi, Yoshihiro Hayashi, Masashi Ishii, Isao Kuwajima, Felix Jiang, Xuan Thang Vu, Sven Ingebrandt, Masatoshi Tokita, Junko Morikawa, Ryo Yoshida, Teruaki Hayakawa","doi":"10.1038/s41524-025-01671-w","DOIUrl":null,"url":null,"abstract":"<p>Next-generation power electronics require efficient heat dissipation management, and molecular design guidelines are needed to develop polymers with high thermal conductivity. Polymer materials have considerably lower thermal conductivity than metals and ceramics due to phonon scattering in the amorphous region. The spontaneous orientation of the molecular chains of liquid crystalline polymers could potentially give rise to high thermal conductivity, but the molecular design of such polymers remains largely empirical. In this study, we developed a machine learning model that predicts with more than 96% accuracy whether liquid crystalline states will form based on the chemical structure of the polymer. By exploring the inverse mapping of this model, we identified a comprehensive set of chemical structures for liquid crystalline polyimides. The polymers were then experimentally synthesized, and the results confirmed that they form liquid crystalline phases, with all polymers exhibiting calculated thermal conductivities within the range of 0.722–1.26 W m<sup>−1</sup> K<sup>−1</sup>.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"3 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01671-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Next-generation power electronics require efficient heat dissipation management, and molecular design guidelines are needed to develop polymers with high thermal conductivity. Polymer materials have considerably lower thermal conductivity than metals and ceramics due to phonon scattering in the amorphous region. The spontaneous orientation of the molecular chains of liquid crystalline polymers could potentially give rise to high thermal conductivity, but the molecular design of such polymers remains largely empirical. In this study, we developed a machine learning model that predicts with more than 96% accuracy whether liquid crystalline states will form based on the chemical structure of the polymer. By exploring the inverse mapping of this model, we identified a comprehensive set of chemical structures for liquid crystalline polyimides. The polymers were then experimentally synthesized, and the results confirmed that they form liquid crystalline phases, with all polymers exhibiting calculated thermal conductivities within the range of 0.722–1.26 W m−1 K−1.

Abstract Image

利用机器学习发现具有高导热性的液晶聚合物
下一代电力电子需要高效的散热管理,并且需要分子设计指南来开发具有高导热性的聚合物。由于非晶区的声子散射,聚合物材料的导热系数比金属和陶瓷低得多。液晶聚合物分子链的自发取向可能会产生高导热性,但这种聚合物的分子设计在很大程度上仍然是经验主义的。在这项研究中,我们开发了一种机器学习模型,可以根据聚合物的化学结构预测液晶状态是否会形成,准确率超过96%。通过探索该模型的逆映射,我们确定了液晶聚酰亚胺的一套全面的化学结构。然后实验合成了聚合物,结果证实它们形成了液晶相,所有聚合物的计算热导率在0.722-1.26 W m−1 K−1范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信