Hayato Maeda, Stephen Wu, Rika Marui, Erina Yoshida, Kan Hatakeyama-Sato, Yuta Nabae, Shiori Nakagawa, Meguya Ryu, Ryohei Ishige, Yoh Noguchi, Yoshihiro Hayashi, Masashi Ishii, Isao Kuwajima, Felix Jiang, Xuan Thang Vu, Sven Ingebrandt, Masatoshi Tokita, Junko Morikawa, Ryo Yoshida, Teruaki Hayakawa
{"title":"Discovery of liquid crystalline polymers with high thermal conductivity using machine learning","authors":"Hayato Maeda, Stephen Wu, Rika Marui, Erina Yoshida, Kan Hatakeyama-Sato, Yuta Nabae, Shiori Nakagawa, Meguya Ryu, Ryohei Ishige, Yoh Noguchi, Yoshihiro Hayashi, Masashi Ishii, Isao Kuwajima, Felix Jiang, Xuan Thang Vu, Sven Ingebrandt, Masatoshi Tokita, Junko Morikawa, Ryo Yoshida, Teruaki Hayakawa","doi":"10.1038/s41524-025-01671-w","DOIUrl":null,"url":null,"abstract":"<p>Next-generation power electronics require efficient heat dissipation management, and molecular design guidelines are needed to develop polymers with high thermal conductivity. Polymer materials have considerably lower thermal conductivity than metals and ceramics due to phonon scattering in the amorphous region. The spontaneous orientation of the molecular chains of liquid crystalline polymers could potentially give rise to high thermal conductivity, but the molecular design of such polymers remains largely empirical. In this study, we developed a machine learning model that predicts with more than 96% accuracy whether liquid crystalline states will form based on the chemical structure of the polymer. By exploring the inverse mapping of this model, we identified a comprehensive set of chemical structures for liquid crystalline polyimides. The polymers were then experimentally synthesized, and the results confirmed that they form liquid crystalline phases, with all polymers exhibiting calculated thermal conductivities within the range of 0.722–1.26 W m<sup>−1</sup> K<sup>−1</sup>.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"3 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01671-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Next-generation power electronics require efficient heat dissipation management, and molecular design guidelines are needed to develop polymers with high thermal conductivity. Polymer materials have considerably lower thermal conductivity than metals and ceramics due to phonon scattering in the amorphous region. The spontaneous orientation of the molecular chains of liquid crystalline polymers could potentially give rise to high thermal conductivity, but the molecular design of such polymers remains largely empirical. In this study, we developed a machine learning model that predicts with more than 96% accuracy whether liquid crystalline states will form based on the chemical structure of the polymer. By exploring the inverse mapping of this model, we identified a comprehensive set of chemical structures for liquid crystalline polyimides. The polymers were then experimentally synthesized, and the results confirmed that they form liquid crystalline phases, with all polymers exhibiting calculated thermal conductivities within the range of 0.722–1.26 W m−1 K−1.
下一代电力电子需要高效的散热管理,并且需要分子设计指南来开发具有高导热性的聚合物。由于非晶区的声子散射,聚合物材料的导热系数比金属和陶瓷低得多。液晶聚合物分子链的自发取向可能会产生高导热性,但这种聚合物的分子设计在很大程度上仍然是经验主义的。在这项研究中,我们开发了一种机器学习模型,可以根据聚合物的化学结构预测液晶状态是否会形成,准确率超过96%。通过探索该模型的逆映射,我们确定了液晶聚酰亚胺的一套全面的化学结构。然后实验合成了聚合物,结果证实它们形成了液晶相,所有聚合物的计算热导率在0.722-1.26 W m−1 K−1范围内。
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.